UNITS OF INTEGRAL GROUP-RINGS OF SOME METACYCLIC GROUPS

被引:7
作者
JESPERS, E
LEAL, G
MILIES, CP
机构
[1] MEM UNIV NEWFOUNDLAND,DEPT MATH & STAT,ST JOHNS A1C 5S7,NEWFOUNDLAND,CANADA
[2] UNIV FED RIO DE JANEIRO,INST MATEMAT,BR-21910 RIO JANEIRO,BRAZIL
[3] UNIV SAO PAULO,INST MATEMAT & ESTATIST,BR-01498 SAO PAULO,BRAZIL
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1994年 / 37卷 / 02期
关键词
D O I
10.4153/CMB-1994-034-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider all metacyclic groups of the type [a, b \ a(n) = l,b2 = 1, ba = a(i)b] and give a concrete description of their rational group algebras. As a consequence we obtain, in a natural way, units which generate a subgroup of finite index in the full unit group, for almost all such groups.
引用
收藏
页码:228 / 237
页数:10
相关论文
共 17 条
[1]  
Bass H., 1966, TOPOLOGY, V4, P391
[2]  
Coleman DB., 1962, T AM MATH SOC, V105, P1, DOI DOI 10.1090/S0002-9947-1962-0142622-2
[3]  
Curtis C.W., 1962, REPRESENTATION THEOR
[4]   DESCRIBING UNITS OF INTEGRAL GROUP-RINGS OF SOME 2-GROUPS [J].
JESPERS, E ;
LEAL, G .
COMMUNICATIONS IN ALGEBRA, 1991, 19 (06) :1809-1827
[5]  
JESPERS E, IDEMPOTENTS RATIONAL
[6]  
JESPERS E, IN PRESS GLASGOW MAT
[7]   EINHEITEN IN Z[D2M] [J].
KLEINERT, E .
JOURNAL OF NUMBER THEORY, 1981, 13 (04) :541-561
[8]   ISOMORPHIC GROUP (AND LOOP) ALGEBRAS [J].
LEAL, G ;
MILIES, CP .
JOURNAL OF ALGEBRA, 1993, 155 (01) :195-210
[9]  
Parmenter M. M., 1992, B BELGIAN MATH SOC, V44, P141
[10]   ABELIAN GROUP ALGEBRAS OF FINITE ORDER [J].
PERLIS, S ;
WALKER, GL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :420-426