CONTRACTIVITY OF RUNGE-KUTTA METHODS

被引:163
作者
KRAAIJEVANGER, JFBM
机构
[1] LEIDEN UNIV,DEPT MATH & COMP SCI,2300 RA LEIDEN,NETHERLANDS
[2] UNIV OXFORD,COMP LAB,OXFORD,ENGLAND
来源
BIT | 1991年 / 31卷 / 03期
关键词
D O I
10.1007/BF01933264
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we present necessary and sufficient conditions for Runge-Kutta methods to be contractive. We consider not only unconditional contractivity for arbitrary dissipative initial value problems, but also conditional contractivity for initial value problems where the right hand side function satisfies a circle condition. Our results are relevant for arbitrary norms, in particular for the maximum norm. For contractive methods, we also focus on the question whether there exists a unique solution to the algebraic equations in each step. Further we show that contractive methods have a limited order of accuracy. Various optimal methods are presented, mainly of explicit type. We provide a numerical illustration to our theoretical results by applying the method of lines to a parabolic and a hyperbolic partial differential equation.
引用
收藏
页码:482 / 528
页数:47
相关论文
共 40 条
[1]  
[Anonymous], 1987, SOLVING ORDINARY DIF, DOI DOI 10.1007/978-3-662-12607-3
[2]  
Berman A, 1979, MATH SCI CLASSICS AP, V9, DOI DOI 10.1137/1.9781611971262
[3]  
BOLLEY C, 1978, RAIRO-ANAL NUMER-NUM, V12, P237
[4]   STABILITY-CRITERIA FOR IMPLICIT RUNGE-KUTTA METHODS [J].
BURRAGE, K ;
BUTCHER, JC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) :46-57
[5]  
Butcher J. C., 1987, NUMERICAL ANAL ORDIN
[6]   IMPLICIT RUNGE-KUTTA PROCESSES [J].
BUTCHER, JC .
MATHEMATICS OF COMPUTATION, 1964, 18 (85) :50-&
[7]   B-STABILITY OF THE METHODS OF RUNGE-KUTTA [J].
CROUZEIX, M .
NUMERISCHE MATHEMATIK, 1979, 32 (01) :75-82
[8]  
Dahlquist G., 1979, TRITANA7906 ROYAL I
[9]  
DAHLQUIST G, 1988, NUMERICAL TREATMENT, P47
[10]  
Dekker K., 1984, STABILITY RUNGE KUTT