ASYMPTOTIC NORMALITY IN A COUPON COLLECTORS PROBLEM

被引:15
作者
ROSEN, B
机构
[1] Matematiska institutionen, Uppsala, 75223
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1969年 / 13卷 / 3-4期
关键词
D O I
10.1007/BF00539204
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {as, s=1, 2, ..., N} be a set of reals and {ps, s=1, 2, ..., N} be a set of probabilities, i.e. ps≧0 and p1+p2+...+pN=1. Let I1I2,... be independent random variables, all with the distribution P(I=s)=ps, s=1, 2, ..., N. Put Uv=l if Iv∋{I1, I2, ..., Iv-1} and Uv=0 otherwise, v=1, 2, .... The random variable Zn= {Mathematical expression} is called the bonus sum after ncoupons for a coupon collector in the situation {(ps, as), s=1, 2, ..., N}. Consider a sequence {(pks, aks), s=l, 2, ..., Nk}, k=1, 2, ..., of collector situations, and let {Zn(k), n=1, 2, ...}, k=1, 2, ..., be the corresponding sequence of bonus sum variables. Let d be an arbitrary natural number and let {Mathematical expression}, k=1, 2, ..., where 1 ≦nk(1)<nk(2)<⋯< nk(d).We assume that N(k)→t8 and that {Mathematical expression}. It is shown that the random vector V(k)is, under general conditions, asymptotically (as k→t8) normally distributed. An asymptotic expression for the covariance matrix of V(k)is derived. © 1969 Springer-Verlag.
引用
收藏
页码:256 / &
相关论文
共 12 条
[1]  
BELLMAN R, 1960, INTRODUCTION MATRIX
[2]  
CHISTYAKOV VP, 1964, THEOR PROBAB APPL, V9, P648
[3]  
Cramer H, 1946, METHODS MATH STAT
[4]  
FELLER W, 1957, INTRODUCTION PROBABI
[5]  
Karlin S., 1968, TOTAL POSITIVITY
[6]  
KITABATAKE S, 1958, MATHEMATICA JAPANICA, V5, P45
[7]  
OKAMOTO M, 1952, OSAKA J MATH, V1, P77
[8]   ON CENTRAL LIMIT THEOREM FOR SUMS OF DEPENDENT RANDOM VARIABLES [J].
ROSEN, B .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 7 (01) :48-&
[9]   ASYMPTOTIC NORMALITY OF SUMS OF RANDOM ELEMENTS WITH VALUES IN A REAL SEPARABLE HILBERT SPACE [J].
ROSEN, B .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 13 (3-4) :221-&
[10]  
SEVASTYANOV BA, 1964, THEOR PROBAB APPL, V9, P198