Predicting the changes in neutralizing antibody interaction with G protein derived from Bangladesh isolates of Nipah virus: molecular dynamics based approach

被引:0
作者
Dsouza, Norine [1 ,2 ]
Kumar, C. Selvaa [1 ]
机构
[1] DY Patil Deemed Be Univ, Sch Biotechnol & Bioinformat, Navi Mumbai, India
[2] St Xaviers Coll, Dept Biotechnol, Mumbai, India
关键词
Nipah virus; G protein; MM/PBSA; NiV-B; NiV-M; HENV26; neutralizing antibody;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The infectious Nipah virus (NiV) is categorized into NiV-M (Malaysia) and NiV-B (Bangladesh) groups based on its genome comparison, pathogenicity, and mortality rate. The development of therapeutic molecules has used NiV-M-derived data in multiple studies than NiV-B. In continuation with this, the protein level investigation is also less explored to understand the interaction with therapeutic neutralizing antibodies for NiV-B. So, this study focuses on understanding the impact of NiV-B-specific mutations on the interaction of therapeutic neutralizing antibodies with the G protein. The population-based comparative analysis of NiV-B G protein sequences with NiV-M sequence identified twenty-six mutations. These predominantly polar mutations were then used to model the mutant protein (G_MT). In a comparative study, the G protein G_MT and reference protein G_WT (Malaysian origin) were subjected to a protein docking with neutralizing human monoclonal antibody HENV26. The binding affinity and the free binding energy of the glycoprotein in complex with G-WT and G_MT were calculated using PRODIGY and MM/PBSA tools respectively. Based on the PRODIGY report, G-WT showed stronger binding (-13.8 kcal/mol) compared to that of the G_MT (-9.0 kcal/mol) with the HENV26 antibody. The stability of the complexes was evaluated using MM/PBSA which showed higher binding energy with HENV26 for G_WT (-75.11 kcal/mol) in contrast to G_MT (-41.66 kcal/mol). The results indicate that the mutant G protein has a reduced ability to bind to neutralizing antibodies, resulting in a decreased effectiveness against strains carrying these mutations.
引用
收藏
页数:11
相关论文
共 52 条
[1]   A Novel Receptor-induced Activation Site in the Nipah Virus Attachment Glycoprotein (G) Involved in Triggering the Fusion Glycoprotein (F) [J].
Aguilar, Hector C. ;
Ataman, Zeynep Akyol ;
Aspericueta, Vanessa ;
Fang, Angela Q. ;
Stroud, Matthew ;
Negrete, Oscar A. ;
Kammerer, Richard A. ;
Lee, Benhur .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (03) :1628-1635
[2]   Association of Clinical Features with Spike Glycoprotein Mutations in Iranian COVID-19 Patients [J].
Ahangarzadeh, Shahrzad ;
Yousefi, Alireza ;
Ranjbar, Mohammad Mehdi ;
Dabiri, Arezou ;
Zarepour, Atefeh ;
Sadeghi, Mahmoud ;
Heidari, Elham ;
Mazrui, Fariba ;
Hosseinzadeh, Majid ;
Ataei, Behrooz ;
Zarrabi, Ali ;
Shariati, Laleh ;
Javanmard, Shaghayegh Haghjooy .
JOURNAL OF CLINICAL MEDICINE, 2022, 11 (21)
[3]   N-Glycans on the Nipah Virus Attachment Glycoprotein Modulate Fusion and Viral Entry as They Protect against Antibody Neutralization [J].
Biering, Scott B. ;
Huang, Andrew ;
Vu, Andy T. ;
Robinson, Lindsey R. ;
Bradel-Tretheway, Birgit ;
Choi, Eric ;
Lee, Benhur ;
Aguilar, Hector C. .
JOURNAL OF VIROLOGY, 2012, 86 (22) :11991-12002
[4]   Escape From Monoclonal Antibody Neutralization Affects Henipavirus Fitness In Vitro and In Vivo [J].
Borisevich, Viktoriya ;
Lee, Benhur ;
Hickey, Andrew ;
DeBuysscher, Blair ;
Broder, Christopher C. ;
Feldmann, Heinz ;
Rockx, Barry .
JOURNAL OF INFECTIOUS DISEASES, 2016, 213 (03) :448-455
[5]   Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2 [J].
Bowden, Thomas A. ;
Aricescu, A. Radu ;
Gilbert, Robert J. C. ;
Grimes, Jonathan M. ;
Jones, E. Yvonne ;
Stuart, David I. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (06) :567-572
[6]   Nipah and Hendra Virus Glycoproteins Induce Comparable Homologous but Distinct Heterologous Fusion Phenotypes [J].
Bradel-Tretheway, Birgit G. ;
Zamora, J. Lizbeth Reyes ;
Stone, Jacquelyn A. ;
Liu, Qian ;
Li, Jenny ;
Aguilar, Hector C. .
JOURNAL OF VIROLOGY, 2019, 93 (13)
[7]   RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy [J].
Burley, Stephen K. ;
Berman, Helen M. ;
Bhikadiya, Charmi ;
Bi, Chunxiao ;
Chen, Li ;
Di Costanzo, Luigi ;
Christie, Cole ;
Dalenberg, Ken ;
Duarte, Jose M. ;
Dutta, Shuchismita ;
Feng, Zukang ;
Ghosh, Sutapa ;
Goodsell, David S. ;
Green, Rachel K. ;
Guranovic, Vladimir ;
Guzenko, Dmytro ;
Hudson, Brian P. ;
Kalro, Tara ;
Liang, Yuhe ;
Lowe, Robert ;
Namkoong, Harry ;
Peisach, Ezra ;
Periskova, Irina ;
Prlic, Andreas ;
Randle, Chris ;
Rose, Alexander ;
Rose, Peter ;
Sala, Raul ;
Sekharan, Monica ;
Shao, Chenghua ;
Tan, Lihua ;
Tao, Yi-Ping ;
Valasatava, Yana ;
Voigt, Maria ;
Westbrook, John ;
Woo, Jesse ;
Yang, Huanwang ;
Young, Jasmine ;
Zhuravleva, Marina ;
Zardecki, Christine .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D464-D474
[8]   Programmatic access to bioinformatics tools from EMBL-EBI update: 2017 [J].
Chojnacki, Szymon ;
Cowley, Andrew ;
Lee, Joon ;
Foix, Anna ;
Lopez, Rodrigo .
NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) :W550-W553
[9]   Annotation of biologically relevant ligands in UniProtKB using ChEBI [J].
Coudert, Elisabeth ;
Gehant, Sebastien ;
de Castro, Edouard ;
Pozzato, Monica ;
Baratin, Delphine ;
Neto, Teresa ;
Sigrist, Christian J. A. ;
Redaschi, Nicole ;
Bridge, Alan .
BIOINFORMATICS, 2023, 39 (01)
[10]   HADDOCK: A protein-protein docking approach based on biochemical or biophysical information [J].
Dominguez, C ;
Boelens, R ;
Bonvin, AMJJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (07) :1731-1737