EXTREME-VALUE DISTRIBUTIONS IN CHAOTIC DYNAMICS

被引:34
作者
BALAKRISHNAN, V
NICOLIS, C
NICOLIS, G
机构
[1] INDIAN INST TECHNOL,DEPT PHYS,MADRAS 600036,TAMIL NADU,INDIA
[2] INST ROYAL METEOROL BELGIQUE,B-1180 BRUSSELS,BELGIUM
关键词
EXTREME VALUE THEORY; LOCAL MAXIMA STATISTICS; FULLY DEVELOPED CHAOS; INTERMITTENT CHAOS;
D O I
10.1007/BF02178361
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A theory of extremes is developed for chaotic dynamical systems and illustrated on representative models of fully developed chaos and intermittent chaos. The cumulative distribution and its associated density for the largest value occurring in a data set, for monotonically increasing (or decreasing) sequences, and for local maxima are evaluated both analytically and numerically. Substantial differences from the classical statistical theory of extremes are found, arising from the deterministic origin of the underlying dynamics.
引用
收藏
页码:307 / 336
页数:30
相关论文
共 14 条
[1]  
BERGE P, 1984, ORDE CHAOS
[2]  
DEBRUIJN NG, 1981, ASYMPTOTIC METHODS A
[3]  
Galambos J., 1978, ASYMPTOTIC THEORY EX
[4]  
Gumbel E J., 1958, STAT EXTREMES
[5]   FULLY-DEVELOPED CHAOTIC 1-D MAPS [J].
GYORGYI, G ;
SZEPFALUSY, P .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1984, 55 (02) :179-186
[6]   THE EXACT INVARIANT DENSITY FOR A CUSP-SHAPED RETURN MAP [J].
HEMMER, PC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (05) :L247-L249
[7]  
Leadbetter M. R., 1983, EXTREMES RELATED PRO
[8]   EXTREMAL THEORY FOR STOCHASTIC-PROCESSES [J].
LEADBETTER, MR ;
ROOTZEN, H .
ANNALS OF PROBABILITY, 1988, 16 (02) :431-478
[9]   THE 1ST, THE BIGGEST, AND OTHER SUCH CONSIDERATIONS [J].
LINDENBERG, K ;
WEST, BJ .
JOURNAL OF STATISTICAL PHYSICS, 1986, 42 (1-2) :201-243
[10]  
LORENZ EN, 1984, TELLUS A, V36, P98, DOI 10.1111/j.1600-0870.1984.tb00230.x