Bernstein Collocation Method for Solving Linear Differential Equations

被引:0
作者
Akyuz-Dascioglu, Aysegul [1 ]
Acar, Nese Isler [2 ]
机构
[1] Pamukkale Univ, Dept Math, TR-20070 Denizli, Turkey
[2] Mehmet Akif Ersoy Univ, Dept Math, TR-15030 Burdur, Turkey
来源
GAZI UNIVERSITY JOURNAL OF SCIENCE | 2013年 / 26卷 / 04期
关键词
Bernstein polynomial approximation; Linear differential equations; Collocation method;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, a new collocation method based on Bernstein polynomials defined on the interval [a, b] is introduced for approximate solutions of initial and boundary value problems involving higher order linear differential equations with variable coefficients. Error analysis of the method is demonstrated. Some numerical solutions are given to illustrate the accuracy, efficiency and implementation of the method, and the results of the proposed method are also compared with the other methods in several examples.
引用
收藏
页码:527 / 534
页数:8
相关论文
共 18 条
[1]   Numerical solution of KdV equation using modified Bernstein polynomials [J].
Bhatta, DD ;
Bhatti, MI .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 174 (02) :1255-1268
[2]  
BHATTACHARYA S, 2008, APPL MATH SCI, V2, P1773
[3]   Numerical solution of a singular integro-differential equation [J].
Bhattacharya, Subhra ;
Mandal, B. N. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (01) :346-350
[4]   Solutions of differential equations in a Bernstein polynomial basis [J].
Bhatti, M. Idrees ;
Bracken, P. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) :272-280
[5]   On the Derivatives of Bernstein Polynomials: An Application for the Solution of High Even-Order Differential Equations [J].
Doha, E. H. ;
Bhrawy, A. H. ;
Saker, M. A. .
BOUNDARY VALUE PROBLEMS, 2011,
[6]   Integrals of Bernstein polynomials: An application for the solution of high even-order differential equations [J].
Doha, E. H. ;
Bhrawy, A. H. ;
Saker, M. A. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (04) :559-565
[7]  
El-Gamel M, 2004, MATH COMPUT, V73, P1325
[8]  
Farin G. E., 2002, CURVES SURFACES CAGD
[9]   ALGORITHMS FOR POLYNOMIALS IN BERNSTEIN FORM. [J].
Farouki, R.T. ;
Rajan, V.T. .
Computer Aided Geometric Design, 1988, 5 (01) :1-26
[10]  
Isik O. R, 2010, J DIFFERENCE APPL, V18, P357