VARIATIONAL CONSTRUCTION OF CONNECTING ORBITS

被引:253
作者
MATHER, JN [1 ]
机构
[1] PRINCETON UNIV,DEPT MATH,PRINCETON,NJ 08544
关键词
LAGRANGIAN SYSTEM; ACTION MINIMIZING SETS; CONNECTING ORBITS;
D O I
10.5802/aif.1377
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the context of certain periodic Lagrangian systems, we find sufficient conditions for the existence of an orbit connecting two action minimizing sets. We also find sufficient conditions for the existence of an orbit which visits (to within epsilon) each of a sequence of action minimizing sets, in turn. These results generalize to n degrees of freedom results previously obtained in 1 degree of freedom (area preserving mappings) [Ma5].
引用
收藏
页码:1349 / 1386
页数:38
相关论文
共 32 条
[21]  
MATHER J, 1988, DESTRUCTION INVARIAN, P199
[22]  
Mather J.N., 1990, B SOC BRASIL MAT, V21, P59
[23]  
Mather J.N., 1991, J AM MATH SOC, V4, P207
[24]   MINIMAL MEASURES [J].
MATHER, JN .
COMMENTARII MATHEMATICI HELVETICI, 1989, 64 (03) :375-394
[25]   ACTION MINIMIZING INVARIANT-MEASURES FOR POSITIVE DEFINITE LAGRANGIAN SYSTEMS [J].
MATHER, JN .
MATHEMATISCHE ZEITSCHRIFT, 1991, 207 (02) :169-207
[26]   MORE DENJOY MINIMAL SETS FOR AREA PRESERVING DIFFEOMORPHISMS [J].
MATHER, JN .
COMMENTARII MATHEMATICI HELVETICI, 1985, 60 (04) :508-557
[27]  
Mather JN., 1987, NATO ASI SER C-MATH, V209, P177
[28]   MONOTONE TWIST MAPPINGS AND THE CALCULUS OF VARIATIONS [J].
MOSER, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 :401-413
[29]  
Nemytskii V. V., 1989, QUALITATIVE THEORY D
[30]  
ROCKAFELLER RT, 1970, PRINCETON MATH SER, V28