VARIATIONAL CONSTRUCTION OF CONNECTING ORBITS

被引:253
作者
MATHER, JN [1 ]
机构
[1] PRINCETON UNIV,DEPT MATH,PRINCETON,NJ 08544
关键词
LAGRANGIAN SYSTEM; ACTION MINIMIZING SETS; CONNECTING ORBITS;
D O I
10.5802/aif.1377
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the context of certain periodic Lagrangian systems, we find sufficient conditions for the existence of an orbit connecting two action minimizing sets. We also find sufficient conditions for the existence of an orbit which visits (to within epsilon) each of a sequence of action minimizing sets, in turn. These results generalize to n degrees of freedom results previously obtained in 1 degree of freedom (area preserving mappings) [Ma5].
引用
收藏
页码:1349 / 1386
页数:38
相关论文
共 32 条
[1]  
ARNOLD VI, 1964, DOKL AKAD NAUK SSSR+, V156, P9
[2]   1ST STEPS IN SYMPLECTIC TOPOLOGY [J].
ARNOLD, VI .
RUSSIAN MATHEMATICAL SURVEYS, 1986, 41 (06) :1-21
[3]  
AUBRY S, 1982, CLASSICAL GROUND STA
[4]  
Aubry S, 1980, RIEMANN PROBLEM COMP, V925
[5]   ONE-DIMENSIONAL VARIATIONAL-PROBLEMS WHOSE MINIMIZERS DO NOT SATISFY THE EULER-LAGRANGE EQUATION [J].
BALL, JM ;
MIZEL, VJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 90 (04) :325-388
[6]   GEODESIC RAYS, BUSEMANN FUNCTIONS AND MONOTONE TWIST MAPS [J].
BANGERT, V .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :49-63
[7]  
BANGERT V, 1988, MATHER SETS TWIST MA, V1, P1
[8]  
Bangert V., 1989, ERGOD THEOR DYN SYST, V10, P263
[9]   BIRKHOFF PERIODIC-ORBITS FOR SMALL PERTURBATIONS OF COMPLETELY INTEGRABLE HAMILTONIAN-SYSTEMS WITH CONVEX HAMILTONIANS [J].
BERNSTEIN, D ;
KATOK, A .
INVENTIONES MATHEMATICAE, 1987, 88 (02) :225-241
[10]   HAMILTONIAN-SYSTEMS, LAGRANGIAN TORI AND BIRKHOFF THEOREM [J].
BIALY, M ;
POLTEROVICH, L .
MATHEMATISCHE ANNALEN, 1992, 292 (04) :619-627