WEIGHTED SOBOLEV INEQUALITIES ON DOMAINS SATISFYING THE CHAIN CONDITION

被引:49
作者
CHUA, SK
机构
关键词
AP WEIGHTS; DOUBLING WEIGHTS; WEIGHTED SOBOLEV INEQUALITY; WEIGHTED POINCARE INEQUALITY; DOMAIN SATISFYING THE BOMAN CHAIN CONDITION;
D O I
10.2307/2159182
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By similar methods of Iwaniec and Nolder (Hardy-Littlewood in equality for quasiregular mappings in certain domains in R(n) , Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985)), we obtain weighted Sobolev inequalities on domains satisfying the Boman chain condition.
引用
收藏
页码:449 / 457
页数:9
相关论文
共 20 条
[1]  
BOJARSKI B, 1989, COMPLEX ANAL LECTURE, V1351, P52
[2]  
CHANILLO S, IN PRESS INDIANA MAT
[3]   A NOTE ON A WEIGHTED SOBOLEV INEQUALITY [J].
CHIARENZA, F ;
FRASCA, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 93 (04) :703-704
[4]  
CHUA SK, IN PRESS EXTENSION T, V2
[5]  
CHUA SK, IN PRESS EXTENSION T
[6]  
CHUA SK, 1991, THESIS RUTGERS U
[7]  
EVANS WD, 1987, P LOND MATH SOC, V54, P141
[8]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116
[9]   THE WEIGHTED POINCARE INEQUALITIES [J].
HURRI, R .
MATHEMATICA SCANDINAVICA, 1990, 67 (01) :145-160
[10]  
HURRI R, 1988, ANN ACAD SCI FENN AI, V71