LOW-BANDGAP CONJUGATED POLYMERS - A JOINT EXPERIMENTAL AND THEORETICAL-STUDY OF THE STRUCTURE OF POLYISOTHIANAPHTHENE

被引:79
|
作者
HOOGMARTENS, I
ADRIAENSENS, P
VANDERZANDE, D
GELAN, J
QUATTROCCHI, C
LAZZARONI, R
BREDAS, JL
机构
[1] LIMBURGS UNIV CENTRUM,INST MAT ONDERZOEK,DEPT SBG,UNIV CAMPUS,B-3590 DIEPENBEEK,BELGIUM
[2] UNIV MONS,DEPT MAT & PROCEDES,SERV CHIM MAT NOUVEAUX,20 PL PARC,B-7000 MONS,BELGIUM
关键词
D O I
10.1021/ma00052a043
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We investigated the structure of a low-bandgap conjugated polymer, polyisothianaphthene (PITN), with a joint experimental and theoretical approach. On the one hand, C-13 NMR measurements are performed on the polymer and on a series of model isothianaphthene molecules. These molecular compounds are designed and synthesized to represent either aromatic or quinoid segments of the polymer chain. Combining cross-polarization magic angle spinning (CP/MAS), cross-depolarization (CDP), and proton-dephasing (PDP) experiments as a function of the polarization and the depolarization time allows determination of the chemical shifts of the four carbon of PITN. These values are compared to the data obtained on the model molecules and discussed in terms of the ground-state structure (aromatic or quinoid) of the polymer. On the other hand, quantum-chemical calculations using the Austin model 1 (AM1) semiempirical Hamiltonian are performed on ITN oligomers of various lengths. The relative stabilities of the aromatic and quinoid valence bond isomers are estimated in relation to the corresponding values for polythiophene. Finally, the electronic properties (bandgap, ionization potential) of aromatic and quinoid PITN are evaluated with the valence effective Hamiltonian method and compared to the experimental data.
引用
收藏
页码:7347 / 7356
页数:10
相关论文
共 50 条
  • [1] Low-bandgap conjugated polymers with photocurrent response over 1000 nm
    Huang, Xuelong
    Lan, Ning
    Chen, Weiming
    Yan, Yunnan
    Zeng, Wei
    Liu, Shengjian
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (14) : 8334 - 8357
  • [2] Synthesis and characterization of conjugated polymers containing low-bandgap arylenevinylene units
    Kim, Ji-Hoon
    Kim, Hee Un
    Shin, Won Suk
    Moon, Sang-Jin
    Yoon, Sung Cheol
    Hwang, Do-Hoon
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 101 : 131 - 139
  • [3] Low-bandgap conjugated polymers with photocurrent response over 1000 nm
    Xuelong Huang
    Ning Lan
    Weiming Chen
    Yunnan Yan
    Wei Zeng
    Shengjian Liu
    Journal of Materials Science, 2021, 56 : 8334 - 8357
  • [4] Photoconductivity of a low-bandgap conjugated polymer
    Soci, Cesare
    Hwang, In-Wook
    Moses, Daniel
    Zhu, Zhengguo
    Waller, David
    Gaudiana, Russel
    Brabec, Christoph J.
    Heeger, Alan J.
    ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (04) : 632 - 636
  • [5] Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics
    Dou, Letian
    Liu, Yongsheng
    Hong, Ziruo
    Li, Gang
    Yang, Yang
    CHEMICAL REVIEWS, 2015, 115 (23) : 12633 - 12665
  • [6] Comparison of the electrochemical and optical bandgap of low-bandgap polymers
    Mühlbacher, D
    Neugebauer, H
    Cravino, A
    Sariciftci, NS
    SYNTHETIC METALS, 2003, 137 (1-3) : 1361 - 1362
  • [7] Low-bandgap conjugated polymers enabling solution-processable tandem solar cells
    Gang Li
    Wei-Hsuan Chang
    Yang Yang
    Nature Reviews Materials, 2
  • [8] Low-bandgap conjugated polymers enabling solution-processable tandem solar cells
    Li, Gang
    Chang, Wei-Hsuan
    Yang, Yang
    NATURE REVIEWS MATERIALS, 2017, 2 (08):
  • [9] Effects of flexibility and branching of side chains on the mechanical properties of low-bandgap conjugated polymers
    Sugiyama, Fumitaka
    Kleinschmidt, Andrew T.
    Kayser, Laure V.
    Rodriquez, Daniel
    Finn, Mickey, III
    Alkhadra, Mohammad A.
    Wan, Jeremy M. -H.
    Ramirez, Julian
    Chiang, Andrew S. -C.
    Root, Samuel E.
    Savagatrup, Suchol
    Lipomi, Darren J.
    POLYMER CHEMISTRY, 2018, 9 (33) : 4354 - 4363
  • [10] Modelling the morphology and thermomechanical behaviour of low-bandgap conjugated polymers and bulk heterojunction films
    Root, Samuel E.
    Jackson, Nicholas E.
    Savagatrup, Suchol
    Arya, Gaurav
    Lipomi, Darren J.
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) : 558 - 569