CONCORDANCES OF METRICS OF POSITIVE SCALAR CURVATURE

被引:7
作者
GAJER, P
机构
[1] Suny, Stony Brook, NY
关键词
D O I
10.2140/pjm.1993.157.257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Spaces of metrics of positive scalar curvature are studied modulo a concordance relation. It is shown that the set of concordance classes of metrics with positive scalar curvature on a dosed manifold of dimension greater-than-or-equal-to 6 depends only on the dimension, the first Stiefel-Whitney class of the manifold, and the cokernel of a homomorphism pi2(M(n)) --> KO(S2). In addition, for every nonneptive integer i the ith concordance group of metrics of positive scalar curvature is defined and it is shown that for a spin manifold the group is nontrivial when n + i = 4k + 3, 8k, 8k + 1, k greater-than-or-equal-to 1.
引用
收藏
页码:257 / 268
页数:12
相关论文
共 7 条
[1]   THE CLASSIFICATION OF SIMPLY CONNECTED MANIFOLDS OF POSITIVE SCALAR CURVATURE [J].
GROMOV, M ;
LAWSON, HB .
ANNALS OF MATHEMATICS, 1980, 111 (03) :423-434
[2]  
GROMOV M, 1983, PUBL MATH-PARIS, V58, P295
[4]  
HAJDUK B, OBSTRUCTION GROUP EX
[5]   HARMONIC SPINORS [J].
HITCHIN, N .
ADVANCES IN MATHEMATICS, 1974, 14 (01) :1-55
[6]  
SHOEN R, 1979, MANUSCRIPTA MATH, V28, P159
[7]  
STALZ S, SIMPLY CONNECTED MAN