CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE

被引:317
作者
GINIBRE, J
VELO, G
机构
[1] Laboratoire de Physique Théorique et Hautes Energies, Laboratoire associé au Centre National, la Recherche Scientifique. Université de Paris-Sud
关键词
D O I
10.1016/0022-1236(79)90077-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is the second of a series of papers devoted to the study of a class of non linear Schrödinger equations of the form i( du dt) = (-Δ + m)u + f(u) in Rn where m is a real constant and f a complex valued non linear function. Here we study the scattering theory for the pair of equations that consists of the previous one and of the equation i( du dt) = (-Δ + m)u for n ≥ 2. Under suitable assumptions of f we prove the existence of the wave operators and asymptotic completeness for a class of repulsive interactions. The assumptions of f that ensure asymptotic completeness cover the case of a single power f(u) = λ | u |p-1u where λ ≥ 0 and (n + 4) n < p < (n + 2) (n - 2). © 1979.
引用
收藏
页码:33 / 71
页数:39
相关论文
共 3 条
  • [1] CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE
    GINIBRE, J
    VELO, G
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) : 1 - 32
  • [2] STRAUSS WA, 1974, SCATTERING THEORY MA, P53
  • [3] ZAKHAROV VE, 1972, SOV PHYS JETP-USSR, V34, P62