EXISTENCE OF MULTIPLE SOLUTIONS FOR SOME NONLINEAR BOUNDARY-VALUE-PROBLEMS

被引:18
作者
NKASHAMA, MN [1 ]
SANTANILLA, J [1 ]
机构
[1] UNIV NEW ORLEANS,DEPT MATH,NEW ORLEANS,LA 70148
关键词
D O I
10.1016/0022-0396(90)90131-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By imposing one-sided conditions on the nonlinearity, where neither regularity nor uniformity is required, we prove the existence of either a nonnegative or a nonpositive solution for first and second order ordinary differential equations with periodic, Neumann, or Dirichlet boundary conditions. Positone and nonpositone problems are considered. Some nonexistence results are also obtained. When using generalized Ambrosetti-Prodi type conditions we get the existence of nonnegative and nonpositive solutions for first and second order periodic or Neumann boundary value problems. Our method of proof makes use of topological degree arguments in Cones. © 1990.
引用
收藏
页码:148 / 164
页数:17
相关论文
共 21 条
[1]   A MULTIPLICITY RESULT FOR A CLASS OF ELLIPTIC BOUNDARY-VALUE-PROBLEMS [J].
AMANN, H ;
HESS, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1979, 84 :145-151
[2]  
Ambrosetti A., 1972, ANN MAT PUR APPL, V93, P231
[3]  
Bailey P. B., 1968, NONLINEAR 2 POINT BO
[4]  
Brezis H., 1983, ANAL FONCTIONNELLE T
[5]  
CASTRO A, IN PRESS P AM MATH S
[6]   GENERALIZED AMBROSETTI-PRODI CONDITIONS FOR NONLINEAR 2-POINT BOUNDARY-VALUE-PROBLEMS [J].
CHIAPPINELLI, R ;
MAWHIN, J ;
NUGARI, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 69 (03) :422-434
[7]   ON POSITIVE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS [J].
DANCER, EN ;
SCHMITT, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 101 (03) :445-452
[8]  
DANCER EN, 1978, J MATH PURE APPL, V57, P351
[9]  
de Figueiredo D.G., 1980, 12E AT SEM BRAS AN S, P230
[10]  
DUNFORD N, 1964, LINEAR OPERATORS, V1