ACTIVE AND PASSIVE DAMPING OF EULER-BERNOULLI BEAMS AND THEIR INTERACTIONS

被引:7
|
作者
PANG, ST [1 ]
TSAO, TC [1 ]
BERGMAN, LA [1 ]
机构
[1] UNIV ILLINOIS,DEPT AERONAUT & ASTRONAUT ENGN,URBANA,IL 61801
关键词
D O I
10.1115/1.2899113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Active and passive damping of Euler-Bernoulli beams and their interactions have been studied using the beam's exact transfer function model without mode truncation or finite element or finite difference approximation. The combination of viscous and Voigt damping is shown to map the open-loop poles and zeros from the imaginary axis in the undamped case into a circle in the left half plane and into the negative real axis. While active PD collocated control using sky-hooked actuators is known to stabilize the beam, it is shown that the derivative action using proof-mass (reaction-mass) actuators can destabilize the beam.
引用
收藏
页码:379 / 384
页数:6
相关论文
共 50 条
  • [1] Spectrum of a network of Euler-Bernoulli beams
    Mercier, D.
    Regnier, V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 174 - 196
  • [2] Control of a network of Euler-Bernoulli beams
    Mercier, D.
    Regnier, V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 874 - 894
  • [3] A family of isospectral Euler-Bernoulli beams
    Gladwell, Graham M. L.
    Morassi, Antonino
    INVERSE PROBLEMS, 2010, 26 (03)
  • [4] Exact solutions of Euler-Bernoulli beams
    Haider, Jamil Abbas
    Zaman, F. D.
    Lone, Showkat Ahmad
    Anwar, Sadia
    Almutlak, Salmeh A.
    Elseesy, Ibrahim E.
    MODERN PHYSICS LETTERS B, 2023, 37 (33):
  • [5] Vibrations in Euler-Bernoulli beams treated with non-local damping patches
    Gonzalez-Lopez, S.
    Fernandez-Saez, J.
    COMPUTERS & STRUCTURES, 2012, 108 : 125 - 134
  • [6] Modal formulation of segmented Euler-Bernoulli beams
    Copetti, Rosemaira Dalcin
    Claeyssen, Julio C. R.
    Tsukazan, Teresa
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2007, 2007
  • [7] Chaotic dynamics of flexible Euler-Bernoulli beams
    Awrejcewicz, J.
    Krysko, A. V.
    Kutepov, I. E.
    Zagniboroda, N. A.
    Dobriyan, V.
    Krysko, V. A.
    CHAOS, 2013, 23 (04)
  • [8] Bayesian parameter estimation of Euler-Bernoulli beams
    Ardekani, Iman T.
    Kaipio, Jari
    Sakhaee, Neda
    Sharifzadeh, Hamid
    TENTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING SYSTEMS, 2019, 2019, 11071
  • [9] Fragile points method for Euler-Bernoulli beams
    Malla, Abinash
    Natarajan, Sundararajan
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2024, 106
  • [10] Stability of a complex network of Euler-Bernoulli beams
    Tianjin University, Department of Mathematics, Tianjin 300072, China
    不详
    WSEAS Trans. Syst., 2009, 3 (379-389):