PITMAN CLOSENESS FOR HIERARCHICAL BAYES PREDICTORS IN MIXED LINEAR-MODELS

被引:2
|
作者
DATTA, GS [1 ]
机构
[1] UNIV GEORGIA,DEPT STAT,ATHENS,GA 30602
关键词
PITMAN CLOSENESS; POSTERIOR PITMAN CLOSENESS; HIERARCHICAL BAYES; MIXED LINEAR MODELS; BEST EQUIVARIANT PREDICTION; LINEAR UNBIASED PREDICTION; ELLIPTICALLY SYMMETRICAL DISTRIBUTIONS; FINITE POPULATION SAMPLING; MEDIAN UNBIASEDNESS;
D O I
10.1080/03610929108830736
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The present article considers the Pitman Closeness (PC) criterion of certain hierarchical Bayes (HB) predictors derived under a normal mixed linear models for known ratios of variance components using a uniform prior for the vector of fixed effects and some proper or improper prior on the error variance. For a generalized Euclidean error, simultaneous HB predictors of several linear combinations of vector of effects are shown to be the Pitman-closest in the frequentist sense in the class of equivariant predictors for location group of transformations. The normality assumption can be relaxed to show that these HB predictors are the Pitman-closest for location-scale group of transformations for a wider family of elliptically symmetric distributions. Also for this family, the HB predictors turn out to be Pitman-closest in the class of all linear unbiased predictors (LUPs). All these results are extended for the HB predictor of finite population mean vector in the context of finite population sampling.
引用
收藏
页码:3713 / 3727
页数:15
相关论文
共 50 条
  • [41] UNDERESTIMATION OF LINEAR-MODELS
    PARK, CN
    RISK ANALYSIS, 1990, 10 (02) : 209 - 210
  • [42] LINEAR-MODELS - COMMENT
    HEALY, MJR
    CLINICAL CHEMISTRY, 1980, 26 (08) : 1227 - 1227
  • [43] GENERALIZED LINEAR-MODELS
    MCCULLAGH, P
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1984, 16 (03) : 285 - 292
  • [44] Inclusion Bayes Factors for Mixed Hierarchical Diffusion Decision Models
    Boehm, Udo
    Evans, Nathan J.
    Gronau, Quentin F.
    Matzke, Dora
    Wagenmakers, Eric-Jan
    Heathcote, Andrew J.
    PSYCHOLOGICAL METHODS, 2024, 29 (04) : 625 - 655
  • [45] GENERALIZED LINEAR-MODELS
    HILBE, JM
    AMERICAN STATISTICIAN, 1994, 48 (03): : 255 - 265
  • [46] CONUNDRUM ON LINEAR-MODELS
    GOOD, IJ
    AMERICAN STATISTICIAN, 1974, 28 (04): : 163 - 163
  • [47] IDENTIFIABILITY IN LINEAR-MODELS
    RICHMOND, J
    ECONOMETRICA, 1974, 42 (04) : 731 - 736
  • [48] COMPARISON OF LINEAR-MODELS
    ZHANG, HP
    KEXUE TONGBAO, 1987, 32 (19): : 1365 - 1366
  • [49] REFORMULATION OF LINEAR-MODELS
    NELDER, JA
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1977, 140 : 48 - 77
  • [50] LINEAR-MODELS - REPLY
    DEMING, SN
    MORGAN, SL
    CLINICAL CHEMISTRY, 1980, 26 (08) : 1227 - 1228