2 SHARP INEQUALITIES FOR THE NORM OF A FACTOR OF A POLYNOMIAL

被引:25
作者
BOYD, DW
机构
[1] Department of Mathematics, The University of British Columbia, Vancouver, B.C., Canada V6T 1Y4
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1112/S0025579300015072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f(x) be a monic polynomial of degree n with complex coefficients, which factors as f(x)=g(x)h(x), where g and h are monic. Let \\f\\ be the maximum of \f(x)\ on the unit circle. We prove that \\g\\ less-than-or-equal-to beta(n) \\f\\ and \\g\\ \\h\\ less-than-or-equal-to delta(n) \\f\\, where beta = M(P0) = 1.38135 ..., where P0 is the polynomial P0(x,y) =1 + x + y and delta = M(P1) = 1.79162 ..., where P1(x, y) = 1 + x + y - xy, and M denotes Mahler's measure. Both inequalities are asymptotically sharp as n --> infinity.
引用
收藏
页码:341 / 349
页数:9
相关论文
共 17 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[2]   PRODUCTS OF POLYNOMIALS IN MANY VARIABLES [J].
BEAUZAMY, B ;
BOMBIERI, E ;
ENFLO, P ;
MONTGOMERY, HL .
JOURNAL OF NUMBER THEORY, 1990, 36 (02) :219-245
[3]   ESTIMATIONS OF POLYNOMIAL PRODUCTS [J].
BEAUZAMY, B ;
ENFLO, P .
JOURNAL OF NUMBER THEORY, 1985, 21 (03) :390-412
[4]   SPECULATIONS CONCERNING THE RANGE OF MAHLERS MEASURE [J].
BOYD, DW .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1981, 24 (04) :453-469
[6]   SOME UNIMODAL RECIPROCAL POLYNOMIALS WITH POSITIVE COEFFICIENTS [J].
EVANS, R ;
MONTGOMERY, P .
AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (09) :870-872
[7]  
FRAME JS, 1980, FIBONACCI QUART, V18, P9
[8]  
Gelfond A. O., 1960, TRANSCENDENTAL NUMBE
[9]  
GLESSER P, 1990, C R MATH REP ACAD SC, V12, P224
[10]   BOUNDING THE COEFFICIENTS OF A DIVISOR OF A GIVEN POLYNOMIAL [J].
GRANVILLE, A .
MONATSHEFTE FUR MATHEMATIK, 1990, 109 (04) :271-277