SEQUENCE SPECIFICITY IN TRIPLE-HELIX FORMATION - EXPERIMENTAL AND THEORETICAL-STUDIES OF THE EFFECT OF MISMATCHES ON TRIPLEX STABILITY

被引:176
作者
MERGNY, JL
SUN, JS
ROUGEE, M
MONTENAYGARESTIER, T
BARCELO, F
CHOMILIER, J
HELENE, C
机构
[1] MUSEUM NATL HIST NAT, BIOPHYS LAB,CNRS,UA 481,INSERM,U201,43 RUE CUVIER, F-75231 PARIS 05, FRANCE
[2] UNIV ILLES BALEARS, DEPT BIOL & CIENCIES SALUT, PALMA DE MALLORCA, SPAIN
关键词
D O I
10.1021/bi00104a031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The specificity of a homopyrimidine oligonucleotide binding to a homopurine-homopyrimidine sequence on double-stranded DNA was investigated by both molecular modeling and thermal dissociation experiments. The presence of a single mismatched triplet at the center of the triplex was shown to destabilize the triple helix, leading to a lower melting temperature and a less favorable energy of interaction. A terminal mismatch was less destabilizing than a central mismatch. The extent of destabilization was shown to be dependent on the nature of the mismatch. Both single base-pair substitution and deletion in the duplex DNA target were investigated. When a homopurine stretch was interrupted by one thymine, guanine was the least destabilizing base on the third strand. However, G in the third strand did not discriminate between a C.G and an A.T base pair. If the stretch of purines was interrupted by a cytosine, the presence of pyrimidines (C or T) in the third strand yielded a less destabilizing effect than purines. This study shows that oligonucleotides forming triple helices can discriminate between duplex DNA sequences that differ by one base pair. It provides a basis for the choice of antigene oligonucleotide sequences targeted to selected sequences on duplex DNA.
引用
收藏
页码:9791 / 9798
页数:8
相关论文
共 33 条
[1]   MODELS OF TRIPLE-STRANDED POLYNUCLEOTIDES WITH OPTIMIZED STEREOCHEMISTRY [J].
ARNOTT, S ;
BOND, PJ ;
SELSING, E ;
SMITH, PJC .
NUCLEIC ACIDS RESEARCH, 1976, 3 (10) :2459-2470
[2]   2ND STRUCTURAL MOTIF FOR RECOGNITION OF DNA BY OLIGONUCLEOTIDE-DIRECTED TRIPLE-HELIX FORMATION [J].
BEAL, PA ;
DERVAN, PB .
SCIENCE, 1991, 251 (4999) :1360-1363
[3]   FORMATION OF INTRAMOLECULAR TRIPLEX IN HOMOPURINE-HOMOPYRIMIDINE MIRROR REPEATS WITH POINT SUBSTITUTIONS [J].
BELOTSERKOVSKII, BP ;
VESELKOV, AG ;
FILIPPOV, SA ;
DOBRYNIN, VN ;
MIRKIN, SM ;
FRANKKAMENETSKII, MD .
NUCLEIC ACIDS RESEARCH, 1990, 18 (22) :6621-6624
[4]   OLIGONUCLEOTIDE INTERACTIONS .3. CIRCULAR DICHROISM STUDIES OF CONFORMATION OF DEOXYOLIGONUCLEOTIDES [J].
CANTOR, CR ;
WARSHAW, MM ;
SHAPIRO, H .
BIOPOLYMERS, 1970, 9 (09) :1059-&
[5]   CONFORMATIONS OF DUPLEX STRUCTURES FORMED BY OLIGODEOXYNUCLEOTIDES COVALENTLY LINKED TO THE INTERCALATOR 2-METHOXY-6-CHLORO-9-AMINOACRIDINE [J].
CIEPLAK, P ;
RAO, SN ;
HELENE, C ;
MONTENAYGARESTIER, T ;
KOLLMAN, PA .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 1987, 5 (02) :361-382
[6]   SITE-SPECIFIC OLIGONUCLEOTIDE BINDING REPRESSES TRANSCRIPTION OF THE HUMAN C-MYC GENE INVITRO [J].
COONEY, M ;
CZERNUSZEWICZ, G ;
POSTEL, EH ;
FLINT, SJ ;
HOGAN, ME .
SCIENCE, 1988, 241 (4864) :456-459
[7]   DEFINITIONS AND NOMENCLATURE OF NUCLEIC-ACID STRUCTURE PARAMETERS [J].
DICKERSON, RE .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 1989, 6 (04) :627-634
[8]  
DURLAND RH, 1990, JERUS SYM Q, V23, P565
[9]   FORMATION OF A THREE-STRANDED POLYNUCLEOTIDE MOLECULE [J].
FELSENFELD, G ;
DAVIES, DR ;
RICH, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1957, 79 (08) :2023-2024
[10]   INHIBITION OF RESTRICTION ENDONUCLEASE CLEAVAGE VIA TRIPLE HELIX FORMATION BY HOMOPYRIMIDINE OLIGONUCLEOTIDES [J].
FRANCOIS, JC ;
SAISONBEHMOARAS, T ;
THUONG, NT ;
HELENE, C .
BIOCHEMISTRY, 1989, 28 (25) :9617-9619