PERIODIC-SOLUTIONS OF NONLINEAR DIFFERENTIAL-EQUATIONS WITH DOUBLE-RESONANCE

被引:37
作者
FABRY, C [1 ]
FONDA, A [1 ]
机构
[1] CATHOLIC UNIV LOUVAIN, INST MATH, B-1348 LOUVAIN, BELGIUM
关键词
D O I
10.1007/BF01765314
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of periodic solutions of a second order nonlinear ordinary differential equation whose nonlinearity is at resonance with two successive eigenvalues of the associated linear operator and satisfies some Landesman-Lazer type conditions at both of them.
引用
收藏
页码:99 / 116
页数:18
相关论文
共 15 条
[1]  
[Anonymous], 1964, ANN POL MATH
[2]  
de Figueiredo D. G., 1981, RECENT ADV DIFFERENT, P89
[3]  
DING TG, 1982, SCI SIN A-MATH P A T, V25, P918
[4]  
Eastham MSP, 1973, SPECTRAL THEORY PERI
[5]   EXISTENCE OF PERIODIC-SOLUTIONS OF DUFFING EQUATIONS [J].
HABETS, P ;
METZEN, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 78 (01) :1-32
[6]   NONLINEAR BOUNDARY-VALUE-PROBLEMS AT RESONANCE [J].
IANNACCI, R ;
NKASHAMA, MN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (04) :455-473
[7]  
IANNACCI R, 1987, 8712 MEMPH STAT U RE
[8]  
LANDESMAN EM, 1970, J MATH MECH, V19, P609
[9]   NONUNIFORM NON-RESONANCE CONDITIONS AT THE 2 1ST EIGENVALUES FOR PERIODIC-SOLUTIONS OF FORCED LIENARD AND DUFFING EQUATIONS [J].
MAWHIN, J ;
WARD, JR .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1982, 12 (04) :643-654
[10]   PERIODIC-SOLUTIONS OF SOME FORCED LIENARD DIFFERENTIAL-EQUATIONS AT RESONANCE [J].
MAWHIN, J ;
WARD, JR .
ARCHIV DER MATHEMATIK, 1983, 41 (04) :337-351