PHASE-SPACE ANALYSIS OF CHAOTIC SPECTRA IN A CONSERVATIVE HAMILTONIAN SYSTEM

被引:23
|
作者
ECKHARDT, B
LLORENTE, JMG
POLLAK, E
机构
[1] UNIV SO CALIF, DEPT CHEM, LOS ANGELES, CA 90089 USA
[2] WEIZMANN INST SCI, DEPT CHEM PHYS, IL-76100 REHOVOT, ISRAEL
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
D O I
10.1016/0009-2614(90)85354-F
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Autocorrelation functions for a chaotic coupled quartic oscillator system are found to have typical recurrence times. Phase space decomposition of the associated spectrum at the peak frequency shows that the peak comes from well defined localized regions bounded by the stable and unstable manifolds of a class of periodic orbits. This localization may be thought as a classical analog of quantum scars. © 1990.
引用
收藏
页码:325 / 332
页数:8
相关论文
共 50 条
  • [11] Optimizing phase-space scanning for a dynamic system monitoring chaotic media
    Slobodyan, S. M.
    MEASUREMENT TECHNIQUES, 2006, 49 (01) : 1 - 6
  • [12] Phase-space prediction of chaotic time series
    Yu, DJ
    Lu, WP
    Harrison, RG
    DYNAMICS AND STABILITY OF SYSTEMS, 1998, 13 (03): : 219 - 236
  • [13] PERIODICITY IN TRAJECTORIES OF CHAOTIC SYSTEMS IN PHASE-SPACE
    SHIBATA, H
    ISHIZAKI, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 197 (1-2) : 130 - 143
  • [14] Adaptive Behavior Analysis of WMR Based on Chaotic Phase-space Reconstruction
    Li, Caihong
    Li, Yibin
    Song, Yong
    Wang, Fengying
    Song, Yingli
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 6441 - 6445
  • [15] SLOW RELAXATION AND PHASE-SPACE PROPERTIES OF A CONSERVATIVE SYSTEM WITH MANY DEGREES OF FREEDOM
    FLACH, S
    MUTSCHKE, G
    PHYSICAL REVIEW E, 1994, 49 (06): : 5018 - 5024
  • [16] HAMILTONIAN PATH INTEGRAL FOR SYSTEMS WITH CONIC PHASE-SPACE
    PROKHOROV, LV
    SHABANOV, SV
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA FIZIKA KHIMIYA, 1988, (01): : 68 - 71
  • [17] PHASE-SPACE COORDINATES AND THE HAMILTONIAN CONSTRAINT OF REGGE CALCULUS
    MAKELA, J
    PHYSICAL REVIEW D, 1994, 49 (06): : 2882 - 2896
  • [18] Phase-space metric for non-Hamiltonian systems
    Tarasov, VE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (10): : 2145 - 2155
  • [19] A Phase-Space Electronic Hamiltonian For Vibrational Circular Dichroism
    Duston, Titouan
    Tao, Zhen
    Bian, Xuezhi
    Bhati, Mansi
    Rawlinson, Jonathan
    Littlejohn, Robert G.
    Pei, Zheng
    Shao, Yihan
    Subotnik, Joseph E.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (18) : 7904 - 7921
  • [20] Eigenstates ignoring regular and chaotic phase-space structures
    Hufnagel, L
    Ketzmerick, R
    Otto, MF
    Schanz, H
    PHYSICAL REVIEW LETTERS, 2002, 89 (15) : 154101/1 - 154101/4