共 14 条
Evaluation of Organic-Inorganic Hybrid Insulation Material Using Inorganic Filler and Polyurethane
被引:0
作者:
Lee, Jong-Kyu
[1
]
Soh, Jung-Sub
[1
]
Noh, Hyun-Kyung
[1
]
机构:
[1] Korea Inst Ceram Eng & Tech, Div Energy & Environm, Seoul 153801, South Korea
来源:
KOREAN JOURNAL OF MATERIALS RESEARCH
|
2012年
/
22卷
/
11期
关键词:
hybrid insulation;
inorganic filler;
thermal conductivity;
foaming condition;
particle size;
D O I:
10.3740/MRSK.2012.22.11.604
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Recently, inorganic-organic hybrid materials have attracted much attention not only for their excellent thermal conductivity but also for their flame retardant properties. In this study, the properties of organic-inorganic hybrid insulating materials using inorganic fillers and polyurethane foam with different foaming conditions have been investigated. The addition of 1.5 wt% water to polyurethane as foaming agent shows the best foaming properties. The pore size was decreased in the foaming body with increasing of the CaCO3 addition. The apparent density and thermal conductivity were increased by increasing the CaCO3 addition. With an increasing amount of CaCO3 powder, the flame retardant property is improved, but the properties of thermal conductivity and apparent density tend to decrease. When the addition of fine particles of CaCO3, the apparent density and thermal conductivity were increased and, also, with the addition of coarse particles over 45 mu m in size, the apparent density and thermal conductivity were increased as well. In this study, the adding of CaCO3 with average particle size of 27 mu m led to the lowest thermal conductivity and apparent density. After evaluation with different inorganic fillers, Mg(OH)(2) showed the highest thermal conductivity; on the other hand, CaCO3 showed the lowest thermal conductivity.
引用
收藏
页码:604 / 608
页数:5
相关论文