A SHAPE-PRESERVING INTERPOLATION - APPLICATIONS TO SEMI-LAGRANGIAN ADVECTION

被引:0
作者
HOLNICKI, P
机构
关键词
D O I
10.1175/1520-0493(1995)123<0862:ASPIAT>2.0.CO;2
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A high-order interpolation scheme, to be applied in semi-Lagrangian advection algorithms, is discussed. An interpolation polynomial is constructed on a four-point discretization stencil and is then coupled with shape-preserving derivative estimates at the internal mesh points. The obtained interpolate of the advected profile is utilized for integration of a scalar function along the wind trajectories. The discrete maximum principle technique is applied to formulate the positivity conditions of the numerical scheme. Results of computational examples are presented for one- and two-dimensional Lagrangian advection of standard test shapes.
引用
收藏
页码:862 / 870
页数:9
相关论文
共 23 条
[1]   NONLINEAR INSTABILITY IN ADVECTION DIFFUSION NUMERICAL-MODELS [J].
ADAM, Y .
APPLIED MATHEMATICAL MODELLING, 1985, 9 (06) :434-440
[2]  
Bates J. R., 1985, LECT APPL MATH, V22, P1
[3]  
BERMEJO R, 1992, MON WEATHER REV, V120, P2622, DOI 10.1175/1520-0493(1992)120<2622:TCOSLA>2.0.CO
[4]  
2
[5]  
BOTT A, 1989, MON WEATHER REV, V117, P1006, DOI 10.1175/1520-0493(1989)117<1006:APDASO>2.0.CO
[6]  
2
[7]   MONOTONE PIECEWISE CUBIC INTERPOLATION [J].
FRITSCH, FN ;
CARLSON, RE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (02) :238-246
[8]   A METHOD FOR CONSTRUCTING LOCAL MONOTONE PIECEWISE CUBIC INTERPOLANTS [J].
FRITSCH, FN ;
BUTLAND, J .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (02) :300-304
[9]  
IKEDA T, 1983, LECTURE NOTES APPLIE, V4
[10]  
PRIESTLEY A, 1993, MON WEATHER REV, V121, P621, DOI 10.1175/1520-0493(1993)121<0621:AQCVOT>2.0.CO