GEOMETRIC ERGODICITY IN DENUMERABLE MARKOV CHAINS

被引:142
|
作者
VEREJONES, D
机构
来源
QUARTERLY JOURNAL OF MATHEMATICS | 1962年 / 13卷 / 49期
关键词
D O I
10.1093/qmath/13.1.7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:7 / &
相关论文
共 50 条
  • [1] GEOMETRIC ERGODICITY AND HYBRID MARKOV CHAINS
    Roberts, Gareth O.
    Rosenthal, Jeffrey S.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 1997, 2 : 13 - 25
  • [2] Equivalences of Geometric Ergodicity of Markov Chains
    Gallegos-Herrada, Marco A.
    Ledvinka, David
    Rosenthal, Jeffrey S.
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (02) : 1230 - 1256
  • [3] ON THE RELATION BETWEEN RECURRENCE AND ERGODICITY PROPERTIES IN DENUMERABLE MARKOV DECISION CHAINS
    DEKKER, R
    HORDIJK, A
    SPIEKSMA, FM
    MATHEMATICS OF OPERATIONS RESEARCH, 1994, 19 (03) : 539 - 559
  • [4] CONDITIONS OF GEOMETRIC ERGODICITY FOR ENUMERABLE MARKOV CHAINS
    POPOV, NN
    DOKLADY AKADEMII NAUK SSSR, 1977, 234 (02): : 316 - 319
  • [5] Geometric ergodicity for classes of homogeneous Markov chains
    Galtchouk, L.
    Pergamenshchikov, S.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (10) : 3362 - 3391
  • [6] Extremal indices, geometric ergodicity of Markov chains, and MCMC
    Roberts G.O.
    Rosenthal J.S.
    Segers J.
    Sousa B.
    Extremes, 2006, 9 (3-4) : 213 - 229
  • [7] POTENTIALS FOR DENUMERABLE MARKOV CHAINS
    KEMENY, JG
    SNELL, JL
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (01) : 120 - &
  • [8] Erratum to: Extremal indices, geometric ergodicity of Markov chains, and MCMC
    Gareth O. Roberts
    Jeffrey S. Rosenthal
    Johan Segers
    Bruno Sousa
    Extremes, 2010, 13 (3) : 373 - 374
  • [9] SUMMABILITY METHODS AND DENUMERABLE MARKOV CHAINS
    RHOADES, BE
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 9 (NOV): : 71 - 79