An Optimal Control of Inventory-Production System with Gamma Distributed Deterioration

被引:0
作者
Dhaiban, A. K. [1 ]
Baten, M. A. [2 ]
Aziz, N. [2 ]
机构
[1] Univ Utara Malaysia, Minist Higher Educ & Sci Res, Sch Quantitat Sci, Sintok, Malaysia
[2] Univ Utara Malaysia, Sch Quantitat Sci, Minist Higher Educ & Sci Res, Baghdad, Iraq
来源
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS | 2015年 / 53卷 / 02期
关键词
Optimal control; Inventory system; Inventory production system; Gamma distributed deterioration; Demand functions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study is concerned with the optimal control of an inventory-production system with time-varying demand and deterioration items assuming that the deterioration rate follows the Gamma distribution. The Pontryagin maximum principle is applied here to derive the optimality conditions from the dynamic of the inventory- production level. The simulation and sensitivity analysis results of the inventory system are illustrated for a set of Gamma distributed parametric values. The numerical solution of the inventory- production system with different demand functions are presented extensively.
引用
收藏
页码:80 / 89
页数:10
相关论文
共 16 条
[1]  
Basu M., 2008, INT J STAT EC, V2
[2]  
Borwein J.M., 2013, NOT AM MATH SOC, V60, P50, DOI DOI 10.1090/NOTI936
[3]  
Bounkhel M, 2005, APPL MATH E-NOTES, V5, P36
[4]  
CHEN J, 2003, INFORM OPTIMIZATION, V24, P1
[5]  
Covert R. P., 1973, AIIE Transactions, V5, P323, DOI 10.1080/05695557308974918
[6]  
El-Gohary A., 2008, INT MATH FORUM, V3, P1295
[7]  
Ghare P., 1963, INT J PROD RES, V21, P449
[8]  
GHOSH SK, 2004, ADV MODELING OPTIMIZ, V6, P21
[9]   Recent trends in modeling of deteriorating inventory [J].
Goyal, SK ;
Giri, BC .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 134 (01) :1-16
[10]  
Pontryagin L., 1962, MATH THEORY OPTIMAL