A PARALLEL ALGORITHM FOR THE NONSYMMETRIC EIGENVALUE PROBLEM

被引:17
|
作者
DONGARRA, JJ [1 ]
SIDANI, M [1 ]
机构
[1] OAK RIDGE NATL LAB,MATH SCI SECT,OAK RIDGE,TN 37831
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 1993年 / 14卷 / 03期
关键词
EIGENVALUE PROBLEM; DIVIDE AND CONQUER; PARALLEL COMPUTING;
D O I
10.1137/0914035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes a parallel algorithm for computing the eigenvalues and eigenvectors of a nonsymmetric matrix. The algorithm is based on a divide-and-conquer procedure and uses an iterative refinement technique.
引用
收藏
页码:542 / 569
页数:28
相关论文
共 50 条
  • [21] Super-Exponentially Convergent Parallel Algorithm for Eigenvalue Problems with Fractional Derivatives
    Demkiv, Ihor
    Gavrilyuk, Ivan P.
    Makarov, Volodymyr L.
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2016, 16 (04) : 633 - 652
  • [22] LOCAL AND PARALLEL FINITE ELEMENT ALGORITHM BASED ON MULTILEVEL DISCRETIZATION FOR EIGENVALUE PROBLEMS
    Han, Xiaole
    Li, Yu
    Xie, Hehu
    You, Chunguang
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (01) : 73 - 89
  • [23] A Parallel Structured Divide-and-Conquer Algorithm for Symmetric Tridiagonal Eigenvalue Problems
    Liao, Xia
    Li, Shengguo
    Lu, Yutong
    Roman, Jose E.
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (02) : 367 - 378
  • [24] An efficient algorithm for the eigenvalue problem of a Hermitian quaternion matrix in quantum chemistry
    Guo, Zhenwei
    Jiang, Tongsong
    Wang, Gang
    Vasil'ev, V. I.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 463
  • [25] A new algorithm on the inverse eigenvalue problem for double dimensional Jacobi matrices
    Wu, Xiaoqian
    Jiang, Erxiong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) : 1760 - 1770
  • [26] Parallelizing the QR algorithm for the unsymmetric algebraic eigenvalue problem: Myths and reality
    Henry, G
    VandeGeijn, R
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (04): : 870 - 883
  • [27] Combinatorial preconditioning for accelerating the convergence of the parallel block Jacobi method for the symmetric eigenvalue problem
    Kugaya, Masaki
    Kudo, Shuhei
    Yamamoto, Yusaku
    JSIAM LETTERS, 2021, 13 : 56 - 59
  • [28] PERFORMANCE OF THE BLOCK JACOBI METHOD FOR THE SYMMETRIC EIGENVALUE PROBLEM ON A MODERN MASSIVELY PARALLEL COMPUTER
    Takahashi, Yuusuke
    Hirota, Yuusuke
    Yamamoto, Yusaku
    ALGORITMY 2012, 2012, : 151 - 160
  • [29] Task-based, GPU-accelerated and robust library for solving dense nonsymmetric eigenvalue problems
    Myllykoski, Mirko
    Kjelgaard Mikkelsen, Carl Christian
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (11):
  • [30] Parallel Ant Colony Algorithm for Shortest Path Problem
    Katona, Geza
    Lenart, Balazs
    Juhasz, Janos
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2019, 63 (01): : 243 - 254