DETERMINING EMBEDDING DIMENSION FOR PHASE-SPACE RECONSTRUCTION USING A GEOMETRICAL CONSTRUCTION

被引:2881
作者
KENNEL, MB
BROWN, R
ABARBANEL, HDI
机构
[1] UNIV CALIF SAN DIEGO, DEPT PHYS, LA JOLLA, CA 92093 USA
[2] UNIV CALIF SAN DIEGO, SCRIPPS INST OCEANOG, MARINE PHYS LAB, LA JOLLA, CA 92093 USA
来源
PHYSICAL REVIEW A | 1992年 / 45卷 / 06期
关键词
D O I
10.1103/PhysRevA.45.3403
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We examine the issue of determining an acceptable minimum embedding dimension by looking at the behavior of near neighbors under changes in the embedding dimension from d --> d + 1. When the number of nearest neighbors arising through projection is zero in dimension d(E), the attractor has been unfolded in this dimension. The precise determination of d(E) is clouded by "noise," and we examine the manner in which noise changes the determination of d(E). Our criterion also indicates the error one makes by choosing an embedding dimension smaller than d(E). This knowledge may be useful in the practical analysis of observed time series.
引用
收藏
页码:3403 / 3411
页数:9
相关论文
共 36 条
  • [1] LYAPUNOV EXPONENTS IN CHAOTIC SYSTEMS - THEIR IMPORTANCE AND THEIR EVALUATION USING OBSERVED DATA
    ABARBANEL, HDI
    BROWN, R
    KENNEL, MB
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1991, 5 (09): : 1347 - 1375
  • [2] PREDICTION IN CHAOTIC NONLINEAR-SYSTEMS - METHODS FOR TIME-SERIES WITH BROAD-BAND FOURIER SPECTRA
    ABARBANEL, HDI
    BROWN, R
    KADTKE, JB
    [J]. PHYSICAL REVIEW A, 1990, 41 (04): : 1782 - 1807
  • [3] ABARBANEL HDI, UNPUB
  • [4] [Anonymous], 1991, J NONLINEAR SCI, DOI [10.1007/BF01209065, DOI 10.1007/BF01209065]
  • [5] COMPUTING THE LYAPUNOV SPECTRUM OF A DYNAMIC SYSTEM FROM AN OBSERVED TIME-SERIES
    BROWN, R
    BRYANT, P
    ABARBANEL, HDI
    [J]. PHYSICAL REVIEW A, 1991, 43 (06): : 2787 - 2806
  • [6] LYAPUNOV EXPONENTS FROM OBSERVED TIME-SERIES
    BRYANT, P
    BROWN, R
    ABARBANEL, HDI
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (13) : 1523 - 1526
  • [7] BUMELIENE S, 1988, LITOV FIZ SBORNIK, V28, P569
  • [8] NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES
    CASDAGLI, M
    [J]. PHYSICA D, 1989, 35 (03): : 335 - 356
  • [9] LIAPUNOV EXPONENTS FROM TIME-SERIES
    ECKMANN, JP
    KAMPHORST, SO
    RUELLE, D
    CILIBERTO, S
    [J]. PHYSICAL REVIEW A, 1986, 34 (06): : 4971 - 4979
  • [10] ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS
    ECKMANN, JP
    RUELLE, D
    [J]. REVIEWS OF MODERN PHYSICS, 1985, 57 (03) : 617 - 656