HIGH-ORDER ENO SCHEMES APPLIED TO 2-DIMENSIONAL AND 3-DIMENSIONAL COMPRESSIBLE FLOW

被引:69
作者
SHU, CW
ZANG, TA
ERLEBACHER, G
WHITAKER, D
OSHER, S
机构
[1] NASA, LANGLEY RES CTR, THEORET FLOW PHYS BRANCH, HAMPTON, VA 23665 USA
[2] NASA, LANGLEY RES CTR, INST COMP APPLICAT SCI & ENGN, HAMPTON, VA 23665 USA
[3] NASA, LANGLEY RES CTR, COMPUTAT AERODYNAM BRANCH, HAMPTON, VA 23665 USA
[4] UNIV CALIF LOS ANGELES, DEPT MATH, LOS ANGELES, CA 90024 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
D O I
10.1016/0168-9274(92)90066-M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
High-order essentially non-oscillatory (ENO) finite-difference schemes are applied to the two- and three-dimensional compressible Euler and Navier-Stokes equations. Practical issues, such as vectorization, efficiency of coding, cost comparison with other numerical methods and accuracy degeneracy effects, are discussed. Numerical examples are provided which are representative of computational problems of current interest in transition and turbulence physics. These require both non-oscillatory shock capturing and high resolution for detailed structures in the smooth regions and demonstrate the advantage of ENO schemes.
引用
收藏
页码:45 / 71
页数:27
相关论文
共 27 条
  • [1] ATKINS HL, 1989, AIAA891809 PAP
  • [2] DISCRETE ORTHOGONAL FUNCTION EXPANSIONS FOR NON-UNIFORM GRIDS USING THE FAST FOURIER-TRANSFORM
    CAIN, AB
    FERZIGER, JH
    REYNOLDS, WC
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 56 (02) : 272 - 286
  • [3] CARPENTER MH, 1990, LECTURE NOTES PHYSIC, V371, P254
  • [4] NUMERICAL EXPERIMENTS IN SUPERSONIC BOUNDARY-LAYER STABILITY
    ERLEBACHER, G
    HUSSAINI, MY
    [J]. PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (01): : 94 - 104
  • [5] ERLEBACHER G, 1990, ICASE9015 REP
  • [6] Uniformly high order accurate essentially non-oscillatory schemes .3. (Reprinted from Journal of Computational Physics, vol 71, pg 231, 1987)
    Harten, A
    Engquist, B
    Osher, S
    Chakravarthy, SR
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (01) : 3 - 47
  • [7] UNIFORMLY HIGH-ORDER ACCURATE NONOSCILLATORY SCHEMES .1.
    HARTEN, A
    OSHER, S
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (02) : 279 - 309
  • [8] HARTEN A, 1986, P INT C HYPERBOLIC P
  • [9] HUSSAINI MY, 1987, ANNU REV FLUID MECH, V19, P339, DOI 10.1146/annurev.fl.19.010187.002011
  • [10] LELE S, 1989, AIAA890374 PAP