ERGODIC-THEORY ON GALTON-WATSON TREES - SPEED OF RANDOM-WALK AND DIMENSION OF HARMONIC MEASURE

被引:100
作者
LYONS, R
PEMANTLE, R
PERES, Y
机构
[1] INDIANA UNIV,DEPT MATH,BLOOMINGTON,IN 47405
[2] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
[3] UNIV CALIF BERKELEY,DEPT STAT,BERKELEY,CA 94720
关键词
D O I
10.1017/S0143385700008543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider simple random walk on the family tree T of a nondegenerate supercritical Galton-Watson branching process and show that the resulting harmonic measure has a.s. strictly smaller Hausdorff dimension than that of the whole boundary of T. Concretely, this implies that an exponentially small fraction of the nth level of T carries most of the harmonic measure. First-order asymptotics for the rate of escape, Green function and the Avez entropy of the random walk are also determined. Ergodic theory of the shift on the space of random walk paths on trees is the main tool; the key observation is that iterating the transformation induced from this shift to the subset of 'exit points' yields a nonintersecting path sampled from harmonic measure.
引用
收藏
页码:593 / 619
页数:27
相关论文
共 20 条
  • [1] [Anonymous], 1989, ERGODIC THEORY
  • [2] Asmussen S., 1983, PROGR PROBABILITY ST, V3
  • [3] Athreya K., 1972, BRANCHING PROCESSES, DOI DOI 10.1007/978-3-642-65371-1
  • [5] Billingsley P., 1965, ERGODIC THEORY INFOR
  • [6] Breiman L., 1968, PROBABILITY
  • [7] DOYLE PG, 1984, RANDOM WALKS ELECTRI
  • [8] FURSTENBERG H, 1970, PROBLEMS ANAL SYMPOS, P00041
  • [9] RANDOM ELECTRICAL NETWORKS ON COMPLETE GRAPHS
    GRIMMETT, G
    KESTEN, H
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1984, 30 (AUG): : 171 - 192
  • [10] HAWKES J, 1981, J LOND MATH SOC, V24, P373