Rainbow connection numbers of line graphs, middle graphs and total graphs

被引:0
作者
Sun, Yuefang [1 ]
机构
[1] Shaoxing Univ, Dept Math, Chengnan Rd 900, Shaoxing 312000, Zhejiang, Peoples R China
来源
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS | 2013年 / 42卷 / 12期
关键词
rainbow connection number; line graph; middle graph; total graph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A path in an edge-colored graph, where adjacent edges may be colored the same, is a rainbow path if no two edges of it are colored the same. A nontrivial connected graph G is rainbow connected if there is a rainbow path connecting any two vertices, and the rainbow connection number of G, denoted rcG), is the minimum number of colors that are needed in order to make G rainbow connected. In this paper, we investigate the rainbow connection numbers of the line graph, middle graph and total graph of a connected triangle-free graph G. We obtain three near) sharp upper bounds in terms of the number of vertex-disjoint cycles of the original graph G.
引用
收藏
页码:361 / 369
页数:9
相关论文
共 16 条
[1]  
Akiyama J., 1975, TRU MATH, V11, P35
[2]  
BEHZAD M, 1967, PROC CAMB PHILOS S-M, V63, P679
[3]  
Bondy J. A., 2008, GTM, V244
[4]  
Chartrand G, 2008, MATH BOHEM, V133, P85
[5]  
Chikkodimath S. B., 1973, SEMITOTAL GRAPHS 2, P5
[6]  
FIOL MA, 1984, IEEE T COMPUT, V33, P400, DOI 10.1109/TC.1984.1676455
[7]   TRAVERSABILITY AND CONNECTIVITY OF MIDDLE GRAPH OF A GRAPH [J].
HAMADA, T ;
YOSHIMURA, I .
DISCRETE MATHEMATICS, 1976, 14 (03) :247-255
[8]  
Hedetniemi S., 1972, LECT NOTES MATH, P139
[9]  
Hemminger R.L., 1978, SELECTED TOPICS GRAP, P271
[10]  
Li F., UTIL MATH IN PRESS