FPGA-Based Implementation of a Multilayer Perceptron Suitable for Chaotic Time Series Prediction

被引:26
作者
Dalia Pano-Azucena, Ana [1 ]
Tlelo-Cuautle, Esteban [1 ]
Tan, Sheldon X. -D. [2 ]
Ovilla-Martinez, Brisbane [3 ]
Gerardo de la Fraga, Luis [4 ]
机构
[1] INAOE, Dept Elect, Puebla 72840, Mexico
[2] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
[3] Univ Autonoma Metropolitana, Unidad Iztapalapa, Mexico City 09340, DF, Mexico
[4] CINVESTAV, Dept Comp Sci, Mexico City 07360, DF, Mexico
来源
TECHNOLOGIES | 2018年 / 6卷 / 04期
关键词
chaos; time series prediction; FPGA; multilayer perceptron;
D O I
10.3390/technologies6040090
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Many biological systems and natural phenomena exhibit chaotic behaviors that are saved in time series data. This article uses time series that are generated by chaotic oscillators with different values of the maximum Lyapunov exponent (MLE) to predict their future behavior. Three prediction techniques are compared, namely: artificial neural networks (ANNs), the adaptive neuro-fuzzy inference system (ANFIS) and least-squares support vector machines (SVM). The experimental results show that ANNs provide the lowest root mean squared error. That way, we introduce a multilayer perceptron that is implemented using a field-programmable gate array (FPGA) to predict experimental chaotic time series.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Implementation of FPGA-based real time novel chaotic oscillator
    Ismail Koyuncu
    Ahmet Turan Ozcerit
    Ihsan Pehlivan
    Nonlinear Dynamics, 2014, 77 : 49 - 59
  • [2] Implementation of FPGA-based real time novel chaotic oscillator
    Koyuncu, Ismail
    Ozcerit, Ahmet Turan
    Pehlivan, Ihsan
    NONLINEAR DYNAMICS, 2014, 77 (1-2) : 49 - 59
  • [3] Enhanced FPGA implementation of Echo State Networks for chaotic time series prediction
    Gonzalez-Zapata, Astrid Maritza
    Fraga, Luis Gerardo de la
    Ovilla-Martinez, Brisbane
    Tlelo-Cuautle, Esteban
    Cruz-Vega, Israel
    INTEGRATION-THE VLSI JOURNAL, 2023, 92 : 48 - 57
  • [4] Pipeline FPGA-Based Implementations of ANNs for the Prediction of up to 600-Steps-Ahead of Chaotic Time Series
    Pano-Azucena, Ana Dalia
    Tlelo-Cuautle, Esteban
    Ovilla-Martinez, Brisbane
    de la Fraga, Luis Gerardo
    Li, Rui
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2021, 30 (09)
  • [5] An FPGA-based multiple-weight-and-neuron-fault tolerant digital multilayer perceptron
    Horita, T.
    Takanami, I.
    NEUROCOMPUTING, 2013, 99 : 570 - 574
  • [6] An FPGA-based multiple-weight-and-neuron-fault tolerant digital multilayer perceptron (Full version)
    Horita, Tadayoshi
    Takanami, Itsuo
    Akiba, Masakazu
    Terauchi, Mina
    Kanno, Tsuneo
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, 9030 : 148 - 171
  • [7] Quaternionic multilayer perceptrons for chaotic time series prediction
    Arena, P
    Caponetto, R
    Fortuna, L
    Muscato, G
    Xibilia, MG
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1996, E79A (10) : 1682 - 1688
  • [8] FPGA implementation of multilayer perceptron for modeling of photovoltaic panel
    Mekki, R.
    Mellit, A.
    Salhi, H.
    Belhout, K.
    INTELLIGENT SYSTEMS AND AUTOMATION, 2008, 1019 : 211 - +
  • [9] An analog circuit design and FPGA-based implementation of the Burke-Shaw chaotic system
    Koyuncu, Ismail
    Ozcerit, Ahmet Turan
    Pehlivan, Ihsan
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2013, 7 (9-10): : 635 - 638
  • [10] The Design and FPGA-Based Implementation of a Stream Cipher Based on a Secure Chaotic Generator
    Dridi, Fethi
    El Assad, Safwan
    El Hadj Youssef, Wajih
    Machhout, Mohsen
    Lozi, Rene
    APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 19