NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS WITH MULTIPLE POLES

被引:0
作者
Li, Yuntong [1 ]
机构
[1] Shaanxi Railway Inst, Dept Basic Courses, Weinan 714000, Shaanxi, Peoples R China
来源
TAMKANG JOURNAL OF MATHEMATICS | 2014年 / 45卷 / 04期
关键词
Meromorphic functions; normal family; multiplicity;
D O I
10.5556/j.tkjm.45.2014.1376
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let J be a family of meromorphic functions defined in a domain D and a, b be two constants such that a not equal 0, infinity and b not equal infinity. If for each f is an element of J, all poles of f (z) are of multiplicity at least 3 in D, and f '(z) + af(2) (z) b has at most 1 zero in D, ignoring multiplicity, then F is normal in D.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 19 条
[1]   Normality of meromorphic functions whose derivatives have 1-points [J].
Chang, Jianming .
ARCHIV DER MATHEMATIK, 2010, 94 (06) :555-564
[2]  
CHEN HH, 1995, SCI CHINA SER A, V38, P789
[3]   NORMAL FAMILIES AND NEVANLINNA THEORY [J].
DRASIN, D .
ACTA MATHEMATICA UPPSALA, 1969, 122 (3-4) :231-&
[4]  
Fang M. L., 2001, INDIAN J MATH, V43, P341
[5]   PICARD VALUES OF MEROMORPHIC FUNCTIONS AND THEIR DERIVATIVES [J].
HAYMAN, WK .
ANNALS OF MATHEMATICS, 1959, 70 (01) :9-42
[6]  
Hayman WK., 1967, RES PROBLEMS FUNCTIO
[7]   ON NORMAL-FAMILIES AND A RESULT OF DRASIN [J].
LANGLEY, JK .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 98 :385-393
[8]  
Li SY., 1984, J FUJIAN NORMAL U, V2, P156
[9]  
LI XJ, 1985, SCI SIN A-MATH P A T, V28, P596
[10]   ON NORMAL CRITERION OF MEROMORPHIC FUNCTIONS [J].
PANG, XC .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1990, 33 (05) :521-527