ON THE CONTAINMENT CONDITION FOR ADAPTIVE MARKOV CHAIN MONTE CARLO ALGORITHMS

被引:0
作者
Bai, Yan [1 ]
Roberts, Gareth O. [2 ]
Rosenthal, Jeffrey S. [1 ]
机构
[1] Univ Toronto, Dept Stat, Toronto, ON M5S 3G3, Canada
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
基金
加拿大自然科学与工程研究理事会;
关键词
Markov chain Monte Carlo; adaptive algorithms; ergodicity; diminishing adaptation; Containment;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers ergodicity properties of certain adaptive Markov chain Monte Carlo (MCMC) algorithms for multidimensional target distributions. It was previously shown in [23] that Diminishing Adaptation and Containment imply ergodicity of adaptive MCMC. We derive various sufficient conditions to ensure Containment.
引用
收藏
页码:1 / 54
页数:54
相关论文
共 28 条
  • [1] On the efficiency of adaptive MCMC algorithms
    Andrieu, Christophe
    Atchade, Yves F.
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 336 - 349
  • [2] On the ergodicity properties of some adaptive MCMC algorithms
    Andrieu, Christophe
    Moulines, Eric
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (03) : 1462 - 1505
  • [3] A tutorial on adaptive MCMC
    Andrieu, Christophe
    Thoms, Johannes
    [J]. STATISTICS AND COMPUTING, 2008, 18 (04) : 343 - 373
  • [4] Atchade Y., 2009, PREPRINT
  • [5] Atchade Y. F., 2010, ANN APPL PR IN PRESS
  • [6] On adaptive Markov chain Monte Carlo algorithms
    Atchadé, YF
    Rosenthal, JS
    [J]. BERNOULLI, 2005, 11 (05) : 815 - 828
  • [7] Limit theorems for some adaptive MCMC algorithms with subgeometric kernels
    Atchade, Yves
    Fort, Gersende
    [J]. BERNOULLI, 2010, 16 (01) : 116 - 154
  • [8] BAI Y, 2009, THESIS
  • [9] Bai Y., 2010, J COMPUT GR IN PRESS
  • [10] V-Subgeometric ergodicity for a Hastings-Metropolis algorithm
    Fort, G
    Moulines, E
    [J]. STATISTICS & PROBABILITY LETTERS, 2000, 49 (04) : 401 - 410