FREE OBJECTS IN CERTAIN VARIETIES OF INVERSE-SEMIGROUPS

被引:16
作者
MARGOLIS, SW
MEAKIN, JC
STEPHEN, JB
机构
[1] UNIV NEBRASKA, DEPT COMP SCI, LINCOLN, NE 68588 USA
[2] UNIV NEBRASKA, DEPT MATH & STAT, LINCOLN, NE 68588 USA
[3] NO ILLINOIS UNIV, DEPT MATH, DE KALB, IL 60615 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1990年 / 42卷 / 06期
关键词
D O I
10.4153/CJM-1990-058-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper it is shown how the graphical methods developed by Stephen for analyzing inverse semigroup presentations may be used to study varieties of inverse semigroups. In particular, these methods may be used to solve the word problem for the free objects in the variety of inverse semigroups generated by the five-element combinatorial Brandt semigroup and in the variety of inverse semigroups determined by laws of the form x(n) = x(n+1). Covering space methods are used to study the free objects in a variety of the form V V G where V is a variety of inverse semigroups and G is the variety of groups.
引用
收藏
页码:1084 / 1097
页数:14
相关论文
共 16 条
  • [1] [Anonymous], 2003, TREES-STRUCT FUNCT
  • [2] Clifford A. H., 1961, MATH SURVEYS 7, V1
  • [3] Clifford A. H., 1967, MATH SURVEYS 7, V2
  • [4] Gratzer G, 1979, UNIVERSAL ALGEBRA
  • [5] HIGGINS PJ, 1971, CATEGORIES GROUPOIDS
  • [6] HOPROFT JE, 1969, FORMAL LANGUAGES THE
  • [7] Lallement G., 1979, SEMIGROUPS COMBINATO
  • [8] LOTHAIRE M, 1983, ENCY MATH ITS APPLIC
  • [9] MARGOLIS S, IN PRESS T AM MATH S
  • [10] Margolis S. W., 1987, SEMIGROUPS THEIR APP, P99