ON THE STABILITY OF THE QUADRATIC-ADDITIVE TYPE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES VIA FIXED POINT METHOD

被引:0
作者
Jin, Sun Sook [1 ]
Lee, Yang-Hi [1 ]
机构
[1] Gongju Natl Univ Educ, Dept Math Educ, Gongju 314711, South Korea
来源
KOREAN JOURNAL OF MATHEMATICS | 2012年 / 20卷 / 01期
关键词
stability; additive mapping; random normed space; quadratic-additive type functional equation; fixed point theory;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the stability in random normed spaces via fixed point method for the functional equation 2f(x + y) + f(x - y) + f(y - x) - f(2x) - f(2y) = 0.
引用
收藏
页码:19 / 31
页数:13
相关论文
共 23 条
[1]  
Aoki T., 1950, J MATH SOC JAPAN, V1, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[2]  
Cholewa P.W., 1984, AEQUATIONES MATH, V27, P76
[3]   A FIXED POINT THEOREM OF ALTERNATIVE FOR CONTRACTIONS ON A GENERALIZED COMPLETE METRIC SPACE [J].
DIAZ, JB ;
MARGOLIS, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (02) :305-&
[4]  
Gajda Z., 1991, INT J MATH MATH SCI, V14, P431, DOI [10.1155/S016117129100056X, DOI 10.1155/S016117129100056X]
[5]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[6]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[7]   ON THE STABILITY OF THE GENERALIZED QUADRATIC AND ADDITIVE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES VIA FIXED POINT METHOD [J].
Jin, Sun Sook ;
Lee, Yang-Hi .
KOREAN JOURNAL OF MATHEMATICS, 2011, 19 (04) :437-451
[8]   A FIXED POINT APPROACH TO THE STABILITY OF THE QUADRATIC-ADDITIVE FUNCTIONAL EQUATION [J].
Jin, Sun Sook ;
Lee, Yang-Hi .
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2011, 18 (04) :313-328
[9]   A Fixed Point Approach to the Stability of the Cauchy Additive and Quadratic Type Functional Equation [J].
Jin, Sun Sook ;
Lee, Yang-Hi .
JOURNAL OF APPLIED MATHEMATICS, 2011,
[10]   On the Hyers-Ulam stability of the functional equations that have the quadratic property [J].
Jung, SM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 222 (01) :126-137