IDENTIFICATION OF THE EPR-ACTIVE IRON NITROSYL COMPLEXES IN MAMMALIAN FERRITINS

被引:115
作者
LEE, MH
AROSIO, P
COZZI, A
CHASTEEN, ND
机构
[1] UNIV MILAN, SAN RAFFAELE SCI INST, DIBIT, VIA OLGETTINA 60, I-20132 MILAN, ITALY
[2] UNIV MILAN, DEPT BIOMED SCI & TECHNOL, I-20132 MILAN, ITALY
[3] UNIV NEW HAMPSHIRE, DEPT CHEM, DURHAM, NH 03824 USA
关键词
D O I
10.1021/bi00178a026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study was undertaken to characterize the nitric oxide complexes of mammalian ferritin and their EPR properties to gain a better understanding of the interaction of NO with non-heme iron proteins with in the cell. Measurements were made with horse spleen apo-and holoferritins, with chemically modified proteins, and with recombinant human H-chain apoferritin and its site-directed mutants. Three types of EPR signals (A, B, and C) have been identified and attributed to iron-nitrosyl complexes at imidazole groups of histidine, thiol groups of cysteine, and carboxylate groups of aspartate and glutamate, respectively. The C-type axial spectrum has features at g(perpendicular-to)' = 4 and g(parallel-to)' = 2 characteristic of a paramagnetic Fe3+-NO- complex with total spin S = 3/2 and probably arises from nonspecific binding to carboxylate groups on the protein. The S = 1/2 axial B-type signal (g(perpendicular-to)' = 2.033 and g(parallel-to)' = 2.014) is formed at Cys-130 (human H-chain sequence numbering). His-128 and possibly His-118 are sites of formation of the rhombic S = 1/2 A-type complex (g(x)' = 2.055, g(y)' = 2.033, and g(z)' = 2.015); the former residue perhaps plays a role in the conformational stability of the protein as well as in iron binding. The data reveal that the residues Cys-130 and His-128 in the vicinity of 3-fold channels leading to the interior of the protein shell are important in iron-nitrosyl complex formation in mammalian ferritins.
引用
收藏
页码:3679 / 3687
页数:9
相关论文
共 78 条