NEURAL-NETWORK APPROACH TO FAULT-DIAGNOSIS IN CMOS OPAMPS WITH GATE OXIDE SHORT FAULTS

被引:17
作者
YU, S [1 ]
JERVIS, BW [1 ]
ECKERSALL, KR [1 ]
BELL, IM [1 ]
HALL, AG [1 ]
TAYLOR, GE [1 ]
机构
[1] UNIV HULL,SCH ENGN & COMP,VLSI DESIGN & TEST GRP,KINGSTON HULL HU6 7RX,N HUMBERSIDE,ENGLAND
关键词
NEURAL NETWORKS; CMOS INTEGRATED CIRCUITS; INTEGRATED CIRCUIT TESTING; OPERATIONAL AMPLIFIERS;
D O I
10.1049/el:19940472
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Faults owing to gate oxide shorts in a CMOS opamp have been diagnosed in simulations using artificial neural networks to identify corresponding variations in supply current. Ramp and sinusoidal signals gave fault diagnostic accuracy of 67 and 83%, respectively. Using both test signals 100% diagnostic accuracy was achieved.
引用
收藏
页码:695 / 696
页数:2
相关论文
共 4 条
[1]  
ECKERSALL KR, 1993, TESTING MIXED SIGNAL
[2]  
Hawkins C. F., 1986, International Test Conference 1986 Proceedings. Testing's Impact on Design and Technology (Cat. No. 86CH2339-0), P443
[3]  
RUTKOWSKI G, 1902, P INT ARTIFICIAL NEU, P1123
[4]  
TOTTON KAE, EXPERIENCE USING NEU