A FERMAT PRINCIPLE FOR STATIONARY SPACE-TIMES AND APPLICATIONS TO LIGHT RAYS

被引:39
作者
FORTUNATO, D
GIANNONI, F
MASIELLO, A
机构
[1] UNIV PISA,IST MATEMAT APPL,PISA,ITALY
[2] POLITECN BARI,DIPARTIMENTO MATEMAT,BARI,ITALY
关键词
FERMAT PRINCIPLE; LIGHT RAYS; GENERAL RELATIVITY;
D O I
10.1016/0393-0440(94)00011-R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an extension of the classical Fermat principle in optics to stationary space-times. This principle is applied to study the light rays joining an event with a timelike curve. Existence and multiplicity results of light rays are proved. Moreover, Morse Relations relating the set of rays to the topology of the space-time are obtained, by using the number of conjugate points of the ray. The results hold also for stationary space-times with boundary, in particular the Kerr space-time outside the stationary limit surface.
引用
收藏
页码:159 / 188
页数:30
相关论文
共 25 条
[11]  
FORTUNATO D, 1992, FERMAT VARIATIONAL P
[12]   ON THE EXISTENCE OF GEODESICS ON STATIONARY LORENTZ MANIFOLDS WITH CONVEX BOUNDARY [J].
GIANNONI, F ;
MASIELLO, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 101 (02) :340-369
[13]  
GIANNONI F, UNPUB MORSE THEORY G
[14]  
GIANNONI F, UNPUB GEODESICS LORE
[15]  
Hawking S. W., 1973, LARGE SCALE STRUCTUR
[16]  
HELFER A, CONJUGAGE POINTS SPA
[17]  
MASIELLO A, 1991, THESIS PISA
[18]   THE IMBEDDING PROBLEM FOR RIEMANNIAN MANIFOLDS [J].
NASH, J .
ANNALS OF MATHEMATICS, 1956, 63 (01) :20-63
[19]  
O'Neill B., 1983, SEMIRIEMANNIAN GEOME
[20]  
Palais R. S., 1963, TOPOLOGY, V2, P299