SCALING PROPERTY OF VARIATIONAL PERTURBATION EXPANSION FOR A GENERAL ANHARMONIC-OSCILLATOR WITH X(P)-POTENTIAL

被引:19
作者
JANKE, W [1 ]
KLEINERT, H [1 ]
机构
[1] FREE UNIV BERLIN,INST THEORET PHYS,D-14195 BERLIN,GERMANY
关键词
D O I
10.1016/0375-9601(95)00126-N
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove a powerful scaling property for the extremality condition in the recently developed variational perturbation theory which converts divergent perturbation expansions into exponentially fast convergent ones. The proof is given for the energy eigenvalues of an anharmonic oscillator with an arbitrary x(p)-potential. The scaling property greatly increases the accuracy of the results.
引用
收藏
页码:287 / 290
页数:4
相关论文
共 30 条
  • [1] RENORMALIZATION OF TRIAL WAVE FUNCTIONALS USING THE EFFECTIVE POTENTIAL
    BARNES, T
    GHANDOUR, GI
    [J]. PHYSICAL REVIEW D, 1980, 22 (04): : 924 - 938
  • [2] ANHARMONIC OSCILLATOR .2. STUDY OF PERTURBATION-THEORY IN LARGE ORDER
    BENDER, CM
    WU, TT
    [J]. PHYSICAL REVIEW D, 1973, 7 (06): : 1620 - 1636
  • [3] ANHARMONIC OSCILLATOR
    BENDER, CM
    WU, TT
    [J]. PHYSICAL REVIEW, 1969, 184 (05): : 1231 - &
  • [4] CONVERGENCE PROOF FOR OPTIMIZED DELTA-EXPANSION - ANHARMONIC-OSCILLATOR
    DUNCAN, A
    JONES, HF
    [J]. PHYSICAL REVIEW D, 1993, 47 (06): : 2560 - 2572
  • [5] EFFECTIVE CLASSICAL PARTITION-FUNCTIONS
    FEYNMAN, RP
    KLEINERT, H
    [J]. PHYSICAL REVIEW A, 1986, 34 (06): : 5080 - 5084
  • [6] QUANTUM CORRECTIONS TO THE THERMODYNAMICS OF NONLINEAR-SYSTEMS
    GIACHETTI, R
    TOGNETTI, V
    [J]. PHYSICAL REVIEW B, 1986, 33 (11): : 7647 - 7658
  • [7] VARIATIONAL APPROACH TO QUANTUM STATISTICAL-MECHANICS OF NONLINEAR-SYSTEMS WITH APPLICATION TO SINE-GORDON CHAINS
    GIACHETTI, R
    TOGNETTI, V
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (09) : 912 - 915
  • [8] GIACHETTI R, 1986, INT J MAGN MAGN MATE, V54, P861
  • [9] FINITE-TEMPERATURE GAUSSIAN EFFECTIVE POTENTIAL FROM A VARIATIONAL PRINCIPLE
    HAUGERUD, H
    RAVNDAL, F
    [J]. PHYSICAL REVIEW D, 1991, 43 (08): : 2736 - 2738
  • [10] LOOP CORRECTIONS TO THE EFFECTIVE CLASSICAL POTENTIAL
    JAENICKE, J
    KLEINERT, H
    [J]. PHYSICS LETTERS A, 1993, 176 (06) : 409 - 414