A GENERALIZATION OF THE LITTLEWOOD-RICHARDSON RULE

被引:69
作者
LITTELMANN, P
机构
[1] Mathematisches Institut der Universität Basel, CH-4051 Basel
关键词
D O I
10.1016/0021-8693(90)90086-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:328 / 368
页数:41
相关论文
共 50 条
[1]   A geometric Littlewood-Richardson rule [J].
Vakil, Ravi .
ANNALS OF MATHEMATICS, 2006, 164 (02) :371-422
[2]   An algorithmic Littlewood-Richardson rule [J].
Ricky Ini Liu .
Journal of Algebraic Combinatorics, 2010, 31 :253-266
[3]   REFINEMENTS OF THE LITTLEWOOD-RICHARDSON RULE [J].
Haglund, J. ;
Luoto, K. ;
Mason, S. ;
van Willigenburg, S. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (03) :1665-1686
[4]   On applying the Littlewood-Richardson rule [J].
Sviridova I.Y. .
Journal of Mathematical Sciences, 2008, 152 (4) :584-594
[5]   An algorithmic Littlewood-Richardson rule [J].
Liu, Ricky Ini .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 31 (02) :253-266
[6]   The odd Littlewood-Richardson rule [J].
Ellis, Alexander P. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 37 (04) :777-799
[8]   A LITTLEWOOD-RICHARDSON RULE FOR GRASSMANNIAN PERMUTATIONS [J].
Purbhoo, Kevin ;
Sottile, Frank .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (06) :1875-1882
[9]   A short proof of the Littlewood-Richardson rule [J].
Gasharov, V .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (04) :451-453
[10]   A Concise Proof of the Littlewood-Richardson Rule [J].
Stembridge, John R. .
ELECTRONIC JOURNAL OF COMBINATORICS, 2002, 9