4-POINT AFFINE LIE-ALGEBRAS

被引:21
作者
BREMNER, M [1 ]
机构
[1] UNIV TORONTO,DEPT MATH,TORONTO,ON M5S 1A1,CANADA
关键词
D O I
10.2307/2160931
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Lie algebras of the form g X R where g is a simple complex Lie algebra and R = C[s, s(-1), (s(-1))(-1), (s-a)(-1)] for a is an element of C-(0, 1). After showing that R is isomorphic to a quadratic extension of the ring C[t, t(-1)] of Laurent polynomials, we prove that g X R is a quasi-graded Lie algebra with a triangular decomposition. We determine the universal central extension of g X R and show that the cocycles defining it are closely related to ultraspherical (Gegenbauer) polynomials.
引用
收藏
页码:1981 / 1989
页数:9
相关论文
共 15 条
[1]   GENERALIZED AFFINE KAC-MOODY LIE-ALGEBRAS OVER LOCALIZATIONS OF THE POLYNOMIAL RING IN ONE VARIABLE [J].
BREMNER, M .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (01) :21-28
[2]  
Kac V. G., 1990, INFINITE DIMENSIONAL
[4]   CENTRAL EXTENSIONS OF LIE-ALGEBRAS [J].
KASSEL, C ;
LODAY, JL .
ANNALES DE L INSTITUT FOURIER, 1982, 32 (04) :119-142
[5]  
KAZHDAN D, TENSOR STRUCTURES AR, V2
[6]  
KAZHDAN D, 1991, INT MATH RES NOTICES, V2, P21
[7]  
KAZHDAN D, TENSOR STRUCTURES AR, V1
[8]   ALGEBRAS OF VIRASORO TYPE, RIEMANN SURFACES AND STRUCTURES OF THE THEORY OF SOLITONS [J].
KRICHEVER, IM ;
NOVIKOV, SP .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1987, 21 (02) :126-142
[9]  
Larsen M., 1992, K THEORY, V6, P301
[10]  
MOODY R, IN PRESS LIE ALGEBRA