This study describes changes in the immunoreactivity for muscarinic: acetylcholine receptors (mAChRs) in the hippocampus of mice in relation to spatial discrimination behavior, employing the monoclonal antibody M35 raised against purified bovine mAChR protein. Performance in a hole hoard in which the animals learned the pattern of 4 baited holes out of 16 holes served as the measure of spatial discrimination learning and memory. Twenty-six adult male house mice were used, divided into four groups. Three groups served as various controls: group N (naive; blank controls); group H (habituated; animals were introduced to the hole board with all holes baited for 5 consecutive days), and group P (pseudotrained; the animals were admitted to the hole board for 13 consecutive days with all holes baited). The T group (trained) was subjected to the hole board for 5 consecutive habituation days with all holes baited (similar to the H and P groups), followed by 8 successive training days with only four holes baited in a fixed pattern. During the 8 training days, the T group gradually acquired a pattern to visit the baited holes, whereas the P group continued visiting holes in a random fashion. The mice were killed 24 h after the last behavioral session. All principal cells in the cornu ammonis (CA) and dentate gyrus (DG) of the habituated animals revealed increased levels of mAChR immunoreactivity (mAChR-ir) over the naive mice. A minor increase in mAChR-ir was found in the apical dendrites of the CA1 pyramidal cells. Pseudotraining resulted in a CA1-CA2 region with a low level of mAChR-ir, resembling naive animals, whereas the trained mice showed a further increase in mAChR-ir in the CA1-CA2 pyramidal cell bodies and apical dendrites. Optical density measures of the mAChR-ir in the CA1 region revealed a significant (P < 0.05) increase in the pyramidal cell bodies of the hi and T group over the N and P group, and a significant (P < 0.05) increase in the apical dendrites of the T group over all other groups. In contrast to the CA1-CA2 region, both pseudotrained and trained mice revealed high mAChR staining in the CA3-CA4 region and the DG. These results indicate that prolonged exposure to the hole board is sufficient for an enhanced mAChR-ir in the CA3-CA4 and DG, whereas the increase in CA1-CA2 pyramidal cells is a training-specific feature related to spatial orientation, Nonpyramidal neurons within the CA1-CA2 region with enhanced mAChR-ir in the pyramidal cells, however, revealed a decreased level of mGChR-ir. The opposing effect of pyramidal and nonpyramidal cells suggests a shift in the excitability of the hippocampal microcircuitry. Previously we demonstrated an increase and redistribution of hippocampal protein kinase C gamma-immunoreactivity (PKC gamma-ir) induced by hole board learning in mice (Van der Zee et al., 1992, J Neurosci 12:4808-4815). Immunofluorescence double-labeling experiments conducted in the present study in naive and trained animals revealed that the principal cells and DG interneurons co-express mAChRs and pKC gamma, and that the immunoreactivity for both markers increased in relation to spatial orientation within these neurons. The mAChR-positive nonpyramidal cells of the CA1-CA2 region were devoid of PKC gamma and revealed an opposite training-induced effect. These results suggest that the postsynaptic changes in mAChR- and PKC gamma-ir reflect functional alterations of the hippocampal formation induced by spatial learning. (C) 1995 Wiley-Liss, Inc.