DISCRETE LEAST-SQUARES APPROXIMATIONS FOR ORDINARY DIFFERENTIAL-EQUATIONS

被引:15
作者
ASCHER, U [1 ]
机构
[1] UNIV WISCONSIN, MATH RES CTR, MADISON, WI 53706 USA
关键词
D O I
10.1137/0715031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:478 / 496
页数:19
相关论文
共 50 条
[41]   A COMPARISON OF ORDINARY LEAST-SQUARES AND LEAST ABSOLUTE ERROR ESTIMATION [J].
WEISS, AA .
ECONOMETRIC THEORY, 1988, 4 (03) :517-527
[42]   DISCRETE LEAST-SQUARES POLYNOMIAL FITS [J].
SHAMPINE, LF .
COMMUNICATIONS OF THE ACM, 1975, 18 (03) :180-180
[43]   ON IMPLICIT ORDINARY DIFFERENTIAL-EQUATIONS [J].
JEPSON, A ;
SPENCE, A .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1984, 4 (03) :253-274
[44]   SPLINE APPROXIMATIONS OF ARBITRARY DEFECT FOR THE NUMERICAL-SOLUTION OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
MULTHEI, HN .
NUMERISCHE MATHEMATIK, 1979, 32 (02) :147-157
[45]   DIFFERENTIAL ALGEBRAIC EQUATIONS AS STIFF ORDINARY DIFFERENTIAL-EQUATIONS [J].
KNORRENSCHILD, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (06) :1694-1715
[46]   Least-squares Galerkin procedures for parabolic integro-differential equations [J].
Guo, H ;
Rui, HX .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 150 (03) :749-762
[47]   Estimating reducible stochastic differential equations by conversion to a least-squares problem [J].
Garcia, Oscar .
COMPUTATIONAL STATISTICS, 2019, 34 (01) :23-46
[48]   REVIEW OF LEAST-SQUARES METHODS FOR SOLVING PARTIAL-DIFFERENTIAL EQUATIONS [J].
EASON, ED .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1976, 10 (05) :1021-1046
[50]   Estimating reducible stochastic differential equations by conversion to a least-squares problem [J].
Oscar García .
Computational Statistics, 2019, 34 :23-46