DISCRETE LEAST-SQUARES APPROXIMATIONS FOR ORDINARY DIFFERENTIAL-EQUATIONS

被引:15
作者
ASCHER, U [1 ]
机构
[1] UNIV WISCONSIN, MATH RES CTR, MADISON, WI 53706 USA
关键词
D O I
10.1137/0715031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:478 / 496
页数:19
相关论文
共 50 条
[21]   AN ASSOCIATED POLYNOMIAL FOR LEAST-SQUARES APPROXIMATIONS [J].
WARREN, R .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (04) :969-981
[22]   Towards a reliable implementation of least-squares collocation for higher index differential-algebraic equations-Part 2: the discrete least-squares problem [J].
Hanke, Michael ;
Maerz, Roswitha .
NUMERICAL ALGORITHMS, 2022, 89 (03) :965-986
[23]   DISCRETE LEAST-SQUARES METHOD [J].
SAMMON, PH .
MATHEMATICS OF COMPUTATION, 1977, 31 (137) :60-65
[24]   EXISTENCE OF MOMENTS OF ORDINARY LEAST-SQUARES AND 2-STAGE LEAST-SQUARES ESTIMATORS [J].
MARIANO, RS .
ECONOMETRICA, 1972, 40 (04) :643-652
[26]   APPROXIMATION OF ORDINARY DIFFERENTIAL-EQUATIONS BY STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
VERETENNIKOV, AY .
MATHEMATICAL NOTES, 1983, 33 (5-6) :476-477
[27]   ASYMPTOTIC EQUIVALENCE OF ORDINARY LEAST-SQUARES AND GENERALIZED LEAST-SQUARES IN REGRESSIONS WITH INTEGRATED REGRESSORS [J].
PHILLIPS, PCB ;
PARK, JY .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (401) :111-115
[28]   LEAST-SQUARES COMPLETIONS FOR NONLINEAR DIFFERENTIAL-ALGEBRAIC EQUATIONS [J].
CAMPBELL, SL .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :77-94
[29]   High accuracy least-squares solutions of nonlinear differential equations [J].
Mortari, Daniele ;
Johnston, Hunter ;
Smith, Lidia .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 352 :293-307
[30]   WEIGHTED LEAST-SQUARES SOLUTIONS OF OVER -CONSTRAINED DIFFERENTIAL EQUATIONS [J].
Johnston, Hunter ;
Mortari, Daniele .
FIRST IAA/AAS SCITECH FORUM ON SPACE FLIGHT MECHANICS AND SPACE STRUCTURES AND MATERIALS, 2020, 170 :137-150