Energy and exergy assessments of modified Organic Rankine Cycles (ORCs)

被引:193
作者
Safarian, Sahar [1 ]
Aramoun, Fereshteh [1 ]
机构
[1] Sharif Univ Technol, Dept Energy Engn, Tehran, Iran
关键词
Exergy analysis; Organic Rankine Cycle; Regeneration; Turbine bleeding;
D O I
10.1016/j.egyr.2014.10.003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a theoretical framework for the energy and exergy evaluation of a basic as well as three modified Organic Rankine Cycles (ORCs). The modified ORCs considered incorporating turbine bleeding, regeneration and both of them. The results demonstrate that evaporator has major contribution in the exergy destruction which is improved by increase in its pressure. The results confirm that the integrated ORC with turbine bleeding and regeneration has the highest thermal and exergy efficiencies (22.8% and 35.5%) and the lowest exergy loss (42.2 kW) due to decrease in cold utility demand and high power generation. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1 / 7
页数:7
相关论文
共 22 条
[1]   Energy and exergy analysis of a steam power plant in Jordan [J].
Aijundi, Isam H. .
APPLIED THERMAL ENGINEERING, 2009, 29 (2-3) :324-328
[2]   ANN based optimization of supercritical ORC-Binary geothermal power plant: Simav case study [J].
Arslan, Oguz ;
Yetik, Ozge .
APPLIED THERMAL ENGINEERING, 2011, 31 (17-18) :3922-3928
[3]   RANKINE-CYCLE SYSTEMS FOR HARNESSING POWER FROM LOW-GRADE ENERGY-SOURCES [J].
BADR, O ;
OCALLAGHAN, PW ;
PROBERT, SD .
APPLIED ENERGY, 1990, 36 (04) :263-292
[4]   Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles [J].
Bombarda, Paola ;
Invernizzi, Costante M. ;
Pietra, Claudio .
APPLIED THERMAL ENGINEERING, 2010, 30 (2-3) :212-219
[5]   Alternative cycles based on carbon dioxide for central receiver solar power plants [J].
Chacartegui, R. ;
Munoz de Escalona, J. M. ;
Sanchez, D. ;
Monje, B. ;
Sanchez, T. .
APPLIED THERMAL ENGINEERING, 2011, 31 (05) :872-879
[6]   Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle [J].
Dai, Yiping ;
Wang, Jiangfeng ;
Gao, Lin .
APPLIED THERMAL ENGINEERING, 2009, 29 (10) :1983-1990
[7]   Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery [J].
Dai, Yiping ;
Wang, Jiangfeng ;
Gao, Lin .
ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (03) :576-582
[8]   Process integration of organic Rankine cycle [J].
Desai, Nishith B. ;
Bandyopadhyay, Santanu .
ENERGY, 2009, 34 (10) :1674-1686
[9]   Theoretical and experimental investigation of an organic Rankine cycle for a waste heat recovery system [J].
Gu, W. ;
Weng, Y. ;
Wang, Y. ;
Zheng, B. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2009, 223 (A5) :523-533
[10]   Influence of supercritical ORC parameters on plate heat exchanger design [J].
Karellas, Sotirios ;
Schuster, Andreas ;
Leontaritis, Aris-Dimitrios .
APPLIED THERMAL ENGINEERING, 2012, 33-34 :70-76