END-POINT CORRECTED TRAPEZOIDAL QUADRATURE-RULES FOR SINGULAR FUNCTIONS

被引:30
作者
ROKHLIN, V
机构
关键词
D O I
10.1016/0898-1221(90)90348-N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A group of quadrature formulae for end-point singular functions is presented generalizing classical end-point corrected trapezoidal quadrature rules. The actual values of the end-point corrections are obtained for each singularity as a solution of a system of linear algebraic equations. The algorithm is applicable to a wide class of monotonic singularities and does not require that an analytical expression for the singularity be known; only the knowledge of its first several moments and the ability to evaluate it on the interval of integration are needed. © 1990.
引用
收藏
页码:51 / 62
页数:12
相关论文
共 10 条
[1]  
Abramovitz M., 1964, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1964, NUMER MATH
[3]  
ATKINSON KE, 1976, SURVEY NUMERICAL MET
[4]   HANDBOOK SERIES NUMERICAL INTEGRATION - NUMERICAL QUADRATURE BY EXTRAPOLATION [J].
BULIRSCH, R ;
STOER, J .
NUMERISCHE MATHEMATIK, 1967, 9 (04) :271-&
[5]  
Bulirsch R., 1964, NUMER MATH, V6, P413, DOI [10.1007/BF01386092, DOI 10.1007/BF01386092]
[6]  
Karlin S., 1966, TCHEBYCHEFF SYSTEMS
[7]  
LYNESS JH, 1967, MATH COMPUT, V21, P6
[8]  
NAVOT I, 1961, J MATH PHYS, V40
[9]  
Stoer J., 1993, INTRO NUMERICAL ANAL
[10]  
WATERMAN PC, 1964, J MATH PHYS, V43