DYNAMIC BOUNDARY CONTROL OF THE TIMOSHENKO BEAM

被引:52
作者
MORGUL, O
机构
[1] Department of Electrical and Electronics Engineering, at Bilkent University, Ankara
关键词
DISTRIBUTED PARAMETER SYSTEMS; PARTIAL DIFFERENTIAL EQUATIONS; BOUNDARY-VALUE PROBLEMS; STABILITY; LYAPUNOV METHODS;
D O I
10.1016/0005-1098(92)90070-V
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a clamped-free Timoshenko beam. To stabilize the beam vibrations, we propose a dynamic boundary control law applied at the free end of the beam. We prove that with the proposed control law, the beam vibrations uniformly and exponentially decay to zero. The proof uses a Lyapunov functional based on the energy of the system.
引用
收藏
页码:1255 / 1260
页数:6
相关论文
共 11 条
[1]  
CHEN G, 1979, J MATH PURE APPL, V58, P249
[2]   MODELING, STABILIZATION AND CONTROL OF SERIALLY CONNECTED BEAMS [J].
CHEN, G ;
DELFOUR, MC ;
KRALL, AM ;
PAYRE, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (03) :526-546
[3]  
GREENSPAN D, 1988, NUMERICAL ANAL APPL
[4]   BOUNDARY CONTROL OF THE TIMOSHENKO BEAM [J].
KIM, JU ;
RENARDY, Y .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (06) :1417-1429
[5]  
LAGNESE JE, 1989, SIAM STUDIES APPLIED, V10
[6]  
Meirovitch L., 1967, ANAL METHODS VIBRATI
[7]   CONTROL AND STABILIZATION OF A FLEXIBLE BEAM ATTACHED TO A RIGID BODY [J].
MORGUL, O .
INTERNATIONAL JOURNAL OF CONTROL, 1990, 51 (01) :11-31
[8]   ORIENTATION AND STABILIZATION OF A FLEXIBLE BEAM ATTACHED TO A RIGID BODY - PLANAR MOTION [J].
MORGUL, O .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (08) :953-962
[9]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI DOI 10.1007/978-1-4612-5561-1
[10]  
VIDYASAGAR M, 1978, NONLINEAR SYSTEMS AN