QUOTIENT AUTOMATION ACCORDING TO A DIRECT FACTOR OF AN AUTOMORPHISM GROUP

被引:1
作者
FEICHTIN.G
机构
[1] Statistische Abteilung des Instituts für Gesellschafts-, und Wirtschaftswissenschaften der Universität Bonn, Bonn, D-53
关键词
D O I
10.1007/BF02238101
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To each subgroup H of the automorphism group of an automaton we may assign the quotient automaton modulo H, if we define the sets of transitivity under H as its internal states. For strongly connected automata, whose automorphism group has a direct product H×L as subgroup, we prove that the quotient group of this automorphism subgroup modulo H is isomorphic to a automorphism group of the quotient automaton modulo H. © 1966 Springer-Verlag.
引用
收藏
页码:1 / &
相关论文
共 9 条
[1]   SOME RESULTS ON RELATION BETWEEN AUTOMATA AND THEIR AUTOMORPHISM GROUPS [J].
FEICHTINGER, G .
COMPUTING, 1966, 1 (04) :327-+
[2]  
FEICHTINGER G, 1967, EIK, V3, P275
[3]   ON AUTOMORPHISM GROUP OF AN AUTOMATON [J].
FLECK, AC .
JOURNAL OF THE ACM, 1965, 12 (04) :566-&
[4]   ISOMORPHISM GROUPS OF AUTOMATA [J].
FLECK, AC .
JOURNAL OF THE ACM, 1962, 9 (04) :469-&
[5]  
GLUSCHKOW WM, 1963, THEORIS ABSTRAKTEN A
[6]  
GRELL H, 1963, THEORIS ABSTRAKTE ED
[7]  
MOORE EF, 1956, GEDANKEN EXPT SEQUEN, P129
[8]  
RABIN MO, 1959, J RES DEVELOP, V3, P114
[9]   GROUP-TYPE AUTOMATA [J].
TRAUTH, CA .
JOURNAL OF THE ACM, 1966, 13 (01) :170-&