Subdivision of the Spectra for Difference Operator over Certain Sequence Space

被引:0
作者
Basar, Feyzi [1 ]
Durna, Nuh [2 ]
Yildirim, Mustafa [2 ]
机构
[1] Fatih Univ, Dept Math, Istanbul, Turkey
[2] Cumhuriyet Univ, Dept Math, Sivas, Turkey
来源
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES | 2012年 / 6卷
关键词
Spectrum; fine spectrum; approximate point spectrum; defect spectrum; compression spectrum; difference operator;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a series of papers, B. Altay, F. Briar and A. M. Akhmedov recently investigated the spectra and fine spectra for difference operator, considered as bounded operator over various sequence spaces. In the present paper approximation point spectrum, defect spectrum and compression spectrum of difference operator Delta over the sequence spaces c(0), c, l(p) and bv(p) are determined, where bv(p) denotes the space of all sequences (x(k)) such that (x(k) - x(k-1)) belongs to the sequence space l(p) and 1 < p < infinity.
引用
收藏
页码:151 / 165
页数:15
相关论文
共 8 条
[1]  
Akhmedov A.M., 2006, DEMONSTRATIO MATH, V39, P585
[2]   The fine spectra of the difference operator δ over the sequence space bυp, (1 ≤ p &lt; ∞) [J].
Akhmedov, Ali M. ;
Basar, Feyzi .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (10) :1757-1768
[3]   On the fine spectrum of the difference operator Δ on c0 and c [J].
Altay, B ;
Basar, F .
INFORMATION SCIENCES, 2004, 168 (1-4) :217-224
[4]  
Altay B., 2007, COMMUN MATH ANAL, V2, P1
[5]  
Appell J, 2004, DEGRUYTER SER NONLIN, V10, P1, DOI 10.1515/9783110199260
[6]  
Basar F., 2003, UKR MATH J+, V55, P136
[7]  
GOLDBERG S, 1966, UNBOUNDED LINEAR OPE
[8]  
Kayaduman K., 2006, INT MATH FORUM, V1, P1153