CONTINUITY OF SUBADDITIVE PRESSURE FOR SELF-AFFINE SETS

被引:1
作者
Falconer, Kenneth [1 ]
Sloan, Arron [1 ]
机构
[1] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland
关键词
pressure; subadditive; submultiplicative; fractal; self-affine;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 'pressure' functional phi(s) (T-1,...,T-N),defined as the limit of sums of singular value functions of products of linear mappings (T-1,...,T-N),is central in analysing fractal dimensions of self-affine sets. We investigate the continuity of phi(s) with respect to the linear mappings (T-1,...,T-N) which underlie the self-affine sets.
引用
收藏
页码:413 / 427
页数:15
相关论文
共 12 条
[1]  
Falconer K.J., 2003, FRACTAL GEOMETRY
[2]   Dimensions of self-affine fractals and multifractals generated by upper-triangular matrices [J].
Falconer, Kenneth ;
Miao, Jun .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2007, 15 (03) :289-299
[3]  
FENG DJ, ISRAEL J MA IN PRESS
[4]   FALCONERS FORMULA FOR THE HAUSDORFF DIMENSION OF A SELF-AFFINE SET IN R(2) [J].
HUETER, I ;
LALLEY, SP .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :77-97
[5]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[6]   Hausdorff dimension for randomly perturbed self affine attractors [J].
Jordan, Thomas ;
Pollicott, Mark ;
Simon, Karoly .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :519-544
[7]   Overlapping self-affine sets of Kakeya type [J].
Kaenmaki, Antti ;
Shmerkin, Pablo .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 :941-965
[8]  
Peres Y, 2000, PROG PROBAB, V46, P95
[9]   Measure and dimension for some fractal families [J].
Solomyak, B .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 :531-546
[10]   Quasi-Bemoulli measure in its week meaning: results and examples [J].
Testud, B .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (01) :1-35