ON THE LEAST-SQUARES CROSS-VALIDATION BANDWIDTH IN HAZARD RATE ESTIMATION

被引:29
作者
PATIL, PN
机构
关键词
NONPARAMETRIC HAZARD RATE ESTIMATION; KERNEL-BASED ESTIMATOR; CENSORED DATA; BANDWIDTH; CROSS-VALIDATION;
D O I
10.1214/aos/1176349398
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is known that the least squares cross-validation bandwidth is asymptotically optimal in the case of kernel-based density and hazard rate estimation in the settings of both complete and randomly right-censored samples. From a practical point of view, it is important to know at what rate the cross-validation bandwidth converges to the optimal. In this paper we answer this question in a general setup which unifies all four possible cases.
引用
收藏
页码:1792 / 1810
页数:19
相关论文
共 16 条
[1]   DISTRIBUTION FUNCTION INEQUALITIES FOR MARTINGALES [J].
BURKHOLDER, DL .
ANNALS OF PROBABILITY, 1973, 1 (01) :19-42
[2]  
Gyorfi L., 1989, NONPARAMETRIC CURVE
[3]   EXTENT TO WHICH LEAST-SQUARES CROSS-VALIDATION MINIMIZES INTEGRATED SQUARE ERROR IN NONPARAMETRIC DENSITY-ESTIMATION [J].
HALL, P ;
MARRON, JS .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 74 (04) :567-581
[5]   NONPARAMETRIC-ESTIMATION FROM INCOMPLETE OBSERVATIONS [J].
KAPLAN, EL ;
MEIER, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1958, 53 (282) :457-481
[6]   DENSITY AND HAZARD RATE ESTIMATION FOR CENSORED-DATA VIA STRONG REPRESENTATION OF THE KAPLAN-MEIER ESTIMATOR [J].
LO, SH ;
MACK, YP ;
WANG, JL .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 80 (03) :461-473
[7]   ASYMPTOTICALLY OPTIMAL BANDWIDTH SELECTION FOR KERNEL DENSITY ESTIMATORS FROM RANDOMLY RIGHT-CENSORED SAMPLES [J].
MARRON, JS ;
PADGETT, WJ .
ANNALS OF STATISTICS, 1987, 15 (04) :1520-1535
[8]   BANDWIDTH CHOICE FOR NONPARAMETRIC HAZARD RATE ESTIMATION [J].
PATIL, PN .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 35 (01) :15-30
[9]  
PATIL PN, 1990, THESIS U N CAROLINA
[10]  
PATIL PN, 1992, IN PRESS J NONPARAME