COMPACT COMPOSITION OPERATORS ON HARDY-ORLICZ SPACES

被引:0
作者
Sharma, Ajay K. [1 ]
Sharma, S. D. [1 ]
机构
[1] Univ Jammu, Dept Math, Jammu 180006, India
来源
MATEMATICKI VESNIK | 2008年 / 60卷 / 03期
关键词
Hardy-Orlicz space; Composition operator; Nevanlinna counting function; vanishing Carleson measure;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, compact composition operators acting on Hardy-Orlicz spaces H-Phi = {f is an element of H(D) : (sup)(0<r<1) integral(partial derivative D) Phi(log(+) vertical bar f(re(i theta))vertical bar) d sigma < infinity} are studied. In fact, we prove that if Phi is a twice differentiable, non-constant, non-decreasing non-negative, convex function on R, then the composition operator C-phi induced by a holomorphic self-map phi of the unit disk is compact on Hardy-Orlicz spaces H-Phi if and only if it is compact on the Hardy space H-2.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 14 条
[1]   Compact composition operators on the Nevanlinna class [J].
Choa, JS ;
Kim, HO .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (01) :145-151
[2]   Essential norms of composition operators and Aleksandrov measures [J].
Cima, JA ;
Matheson, AL .
PACIFIC JOURNAL OF MATHEMATICS, 1997, 179 (01) :59-64
[3]  
Cowen CC., 1995, COMPOSITION OPERATOR, DOI DOI 10.4028/WWW.SCIENTIFIC.NET/SSP.47-48.223
[4]  
Littlewood J. E., 1925, P LONDON MATH SOC, V23
[5]   Composition operators on Hardy-Orlicz spaces [J].
Liu, LF ;
Cao, GF ;
Wang, XF .
ACTA MATHEMATICA SCIENTIA, 2005, 25 (01) :105-111
[6]   ANGULAR DERIVATIVES AND COMPACT COMPOSITION OPERATORS ON THE HARDY AND BERGMAN SPACES [J].
MACCLUER, BD ;
SHAPIRO, JH .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1986, 38 (04) :878-906
[7]  
MACCLUER BD, 1985, MICH MATH J, V32, P237
[8]  
Rao, 1991, THEORY ORLICZ SPACES
[9]  
SCHWARTZ H., 1969, THESIS
[10]   COMPACT, NUCLEAR, AND HILBERT-SCHMIDT COMPOSITION OPERATORS ON H2 [J].
SHAPIRO, JH ;
TAYLOR, PD .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1973, 23 (06) :471-496